首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vreven D  Welch L 《Perception》2001,30(6):693-705
Stereoscopic surfaces constructed from Kanizsa-type illusory contours or explicit luminance contours were tested for three-dimensional (3-D) shape constancy. The curvature of the contours and the apparent viewing distance between the surface and the observer were manipulated. Observers judged which of two surfaces appeared more curved. Experiment 1 allowed eye movements and revealed a bias in 3-D shape judgment with changes in apparent viewing distance, such that surfaces presented far from the observer appeared less curved than surfaces presented close to the observer. The lack of depth constancy was approximately the same for illusory-contour surfaces and for explicit-contour surfaces. Experiment 2 showed that depth constancy for explicit-contour surfaces improved slightly when fixation was required and eye movements were restricted. These experiments suggest that curvature in depth is misperceived, and that illusory-contour surfaces are particularly sensitive to this distortion.  相似文献   

2.
3.
4.
Binocular depth perception in the pigeon.   总被引:2,自引:0,他引:2       下载免费PDF全文
By means of a discrete-trial simultaneous discrimination procedure, pigeons were trained to respond differentially to visual arrays that were identical except that one of them contained a circle displaced in depth when viewed stereoscopically. Performance was severely disrupted when one eye was occluded. The monocular deficit was peculiar to the depth task, inasmuch as no such decrement was seen on a pattern discrimination. The results imply that presence of the displaced circle was discriminated on the basis of a binocular cue. It was also found that pigeons could discriminate the direction of the displacement. Discrimination of depth was independent of the global form and still occurred when elements of the array were randomly displaced in depth. Performance was not disrupted when the absolute convergence angle of the depth stimulus was changed. The cue that consistently accounted for the behavior seen was the detection of the relative angles of convergence--that is, the retinal disparity of the two planes in depth. Thus, despite the lateral position of the eyes of the pigeon, a small binocular field mediates the binocular discrimination of near objects in depth.  相似文献   

5.
D E Mitchell  M Kaye  B Timney 《Perception》1979,8(4):389-396
A behavioural method is described for the assessment of depth perception of kittens. Measurement is made of the smallest separation in depth that can be discriminated between two adjacent stimuli under both monocular and binocular viewing conditions. Normal animals can discriminate much smaller separations in depth when using two eyes than with monocular viewing, implying the presence of a cue to depth that is uniquely available with binocular viewing. The test provides a quick and reliable way of screening animals for stereopsis.  相似文献   

6.
7.
N Kawabata 《Perception》1986,15(5):563-572
The Necker cube is a line drawing with two possible solutions in depth perception. The process of interpreting a two-dimensional line drawing as a three-dimensional object was investigated using the Necker cube. Attention was directed to a local feature of a briefly presented cube, ie an angle at a vertex. The attended angle was perceived as a front part of the cube and other parts were interpreted so as to match this interpretation. Results show that the local feature to which attention was directed was interpreted first and then global features and other local features were interpreted so as to agree with the local feature interpreted initially. This suggests that the three-dimensional interpretation of the line drawing was made sequentially from the local feature to global structures.  相似文献   

8.
North Dakota State University, Fargo, North Dakota Little is known about infants' perception of depth from motion parallax, even though it is known that infants are sensitive both to motion and to depth-from-motion cues at an early age. The present experiment assesses whether infants are sensitive to the unambiguous depth specified by motion parallax and, if so, when this sensitivity first develops. Eleven infants were followed longitudinally from 8 to 29 weeks. Infants monocularly viewed a translating Rogers and Graham (1979) random-dot stimulus, which appears as a corrugated surface to adult observers. Using the infant-control habituation paradigm, looking time was recorded for each 10-sec trial until habituation, followed by two test trials: one using a depth-reversed and one using a flat stimulus. Dishabituation results indicate that infants may be sensitive to unambiguous depth from motion parallax by 16 weeks of age. Implications for the developmental sequence of depth from motion, stereopsis, and eye movements are discussed.  相似文献   

9.
10.
When two stationary, stereoscopically separated targets are viewed in a completely dark surround, and no cues concerning their egocentric distances from the observer are salient, the farther target tends to be seen at the same distance it would have assumed if it were by itself. The nearer target is seen as being closer than it would have been if seen alone. The present studies extend this previous finding (now termed thefar-anchor effect) into the domain of targets that move in stereoscopic space. Observers viewed two small illuminated targets, which began at either the same or different stereoscopic distances. One of the targets was moved in depth and the observers identified the target that appeared to move. Conditions varied according to the initial depth location of the moving target. Significantly more correct responses were reported when the nearer target moved than when the farther one moved, consistent with the hypothesis that the perception of motion in depth is affected by the aforementioned perceptual anchoring effect of the farther target.  相似文献   

11.
College student subjects were asked to judge perceived depth in computer-generated displays. In all displays, one lattice of points moved through a stationary lattice in either a rowwise or columnwise direction. No points of the two lattices ever touched. Two display variables, strain and shear, each had a significant effect on depth ratings. Shear, however, was only effective at the level of strain for which depth ratings were high. The results confirm earlier studies in which “topological breakage” information was found to affect depth perception. The outcome of this study suggests that principles of perceptual organization can influence the nature of effective breakage information.  相似文献   

12.
13.
The role of apparent depth features and the proximity of the test lines to the adjacent contours in the actuation of the Ponzo illusion was examined. Six versions of the Ponzo figure were employed: a standard Ponzo figure and five modified figures in which the test lines varied in orientation (horizontal or vertical) and in location (inside or outside the converging contours). Both manipulations resulted in a significant decrease in the magnitude of the illusion in comparison to the standard Ponzo figure. The results suggest that the Ponzo illusion is significantly affected by contextual factors.  相似文献   

14.
15.
16.
17.
18.
The role of occlusion in the perception of depth, lightness, and opacity   总被引:2,自引:0,他引:2  
A theory is presented that explains how the visual system infers the lightness, opacity, and depth of surfaces from stereoscopic images. It is shown that the polarity and magnitude of image contrast play distinct roles in surface perception, which can be captured by 2 principles of perceptual inference. First, a contrast depth asymmetry principle articulates how the visual system computes the ordinal depth and lightness relationships from the polarity of local, binocularly matched image contrast. Second, a global transmittance anchoring principle expresses how variations in contrast magnitudes are used to infer the presence of transparent surfaces. It is argued that these principles provide a unified explanation of how the visual system computes the 3-D surface structure of opaque and transparent surfaces.  相似文献   

19.
The perception of depth and slant in three-dimensional scenes specified by texture was investigated in five experiments. Subjects were presented with computer-generated scenes of a ground and ceiling plane receding in depth. Compression, convergence, and grid textures were examined. The effect of the presence or absence of a gap in the center of the display was also assessed. Under some conditions perceived slant and depth from compression were greater than those found with convergence. The relative effectiveness of compression in specifying surface slant was greater for surfaces closer to ground planes (80 degrees slant) than for surfaces closer to frontal parallel planes (40 degrees slant). The usefulness of compression was also observed with single-plane displays and with displays with surfaces oriented to reduce information regarding the horizon.  相似文献   

20.
The effectiveness of velocity gradients in providing relative depth information was assessed using random dot patterns translating horizontally. The gradients simulated two planes meeting at a horizontal line at the center, and subjects judged whether the center was the nearest or farthest part of the display. Accuracy increased with maximum dot speed, exceeding 90% in conditions combining the highest speed (10.4o/sec) and longer of two display durations (10 sec) with unrestricted fixation. Separate experiments examined a rotational component perceived in the motion of the planes and the latency in reporting a rigid organization of the displays. Possible reasons for the chance accuracy found by Farber and McConkie (1979) and alternative explanations of the effect of maximum dot speed on accuracy are discussed. A model is presented that accounts for the effects of dot speed and display duration on the accuracy of relative depth judgments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号