首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A real-world open-field search task was implemented with humans as an analogue of Blaisdell and Cook’s (Anim Cogn 8:7–16, 2005) pigeon foraging task and Sturz, Bodily, and Katz’s (Anim Cogn 9:207–217, 2006) human virtual foraging task to 1) determine whether humans were capable of integrating independently learned spatial maps and 2) make explicit comparisons of mechanisms used by humans to navigate real and virtual environments. Participants searched for a hidden goal located in one of 16 bins arranged in a 4 × 4 grid. In Phase 1, the goal was hidden between two landmarks (blue T and red L). In Phase 2, the goal was hidden to the left and in front of a single landmark (blue T). Following training, goal-absent trials were conducted in which the red L from Phase 1 was presented alone. Bin choices during goal-absent trials assessed participants’ strategies: association (from Phase 1), generalization (from Phase 2), or integration (combination of Phase 1 and 2). Results were inconsistent with those obtained with pigeons but were consistent with those obtained with humans in a virtual environment. Specifically, during testing, participants did not integrate independently learned spatial maps but used a generalization strategy followed by a shift in search behavior away from the test landmark. These results were confirmed by a control condition in which a novel landmark was presented during testing. Results are consistent with the bulk of recent findings suggesting the use of alternative navigational strategies to cognitive mapping. Results also add to a growing body of literature suggesting that virtual environment approaches to the study of spatial learning and memory have external validity and that spatial mechanisms used by human participants in navigating virtual environments are similar to those used in navigating real-world environments.  相似文献   

2.
When driving a vehicle, either the driver or a passenger (henceforth: backseat driver) may be responsible for navigation. Research on active navigation, primarily addressed in virtual environments, suggests that controlling navigation is more central for spatial learning than controlling movement. To test this assumption in a real-world scenario, we manipulated movement control through seating participants in the front or the back position of a tandem bike, and navigation control by presenting differently detailed maps to participants unfamiliar (Experiment 1) or familiar (Experiment 2) with an environment. Landmark knowledge was tested with recognition tasks. For participants unfamiliar with the environment (Experiment 1), passive navigation enabled better landmark recognition than active navigation, but there was no effect of movement control. For participants more familiar with the environment (Experiment 2), there was no effect of navigation control, but drivers showed better landmark recognition than backseat drivers. These findings are discussed in relation to action memory research. Measures of route and survey knowledge demonstrated that good performance resulted from active navigation (Experiment 1-2). Moreover, with regard to these measures, driving compensated for passive navigation if the environment was familiar (Experiment 2). An additional experiment in a lab setting (Experiment 3) validated the manipulation of navigation control and the used tasks and demonstrated the importance of real environment exposure. As our findings suggest, driving may be more relevant for remembering landmarks, but actively controlling navigation (even as a backseat driver) is more relevant for remembering a route than maneuvering a vehicle.  相似文献   

3.
Spatial perspective can be directed by various reference frames, as well as by the direction of motion. In the present study, we explored how ambiguity in spatial tasks can be resolved. Participants were presented with virtual reality environments in order to stimulate a spatialreference frame based on motion. They interacted with an ego-moving spatial system in Experiment 1 and an object-moving spatial system in Experiment 2. While interacting with the virtual environment, the participants were presented with either a question representing a motion system different from that of the virtual environment or a nonspatial question relating to physical features of the virtual environment. They then performed the target task assign the label front in an ambiguous spatial task. The findings indicate that the disambiguation of spatial terms can be influenced by embodied experiences, as represented by the virtual environment, as well as by linguistic context.  相似文献   

4.
The present study aimed at determining the influence of sexual orientation in human spatial learning and memory. Participants performed the Boxes Room, a virtual reality version of the Holeboard. In Experiment I, a reference memory task, the position of the hidden rewards remained constant during the whole experiment. In Experiment II, a working memory task, the position of rewards changed between blocks. Each block consisted of two trials: One trial for acquisition and another for retrieval. The results of Experiment I showed that heterosexual men performed better than homosexual men and heterosexual women. They found the rewarded boxes faster. Moreover, homosexual participants committed more errors than heterosexuals. Experiment II showed that working memory abilities are the same in groups of different sexual orientation. These results suggest that sexual orientation is related to spatial navigation abilities, but mostly in men, and limited to reference memory, which depends more on the function of the hippocampal system.  相似文献   

5.
A chasm divides the huge corpus of maze studies found in the literature, with animals tested in mazes on the one side and humans tested with mazes on the other. Advances in technology and software have made possible the production and use of virtual mazes, which allow humans to navigate computerized environments and thus for humans and nonhuman animals to be tested in comparable spatial domains. In the present experiment, this comparability is extended even further by examining whether rhesus monkeys (Macaca mulatta) can learn to explore virtual mazes. Four male macaques were trained to manipulate a joystick so as to move through a virtual environment and to locate a computer-generated target. The animals succeeded in learning this task, and located the target even when it was located in novel alleys. The search pattern within the maze for these animals resembled the pattern of maze navigation observed for monkeys that were tested on more traditional two-dimensional computerized mazes.  相似文献   

6.
For large numbers of targets, path planning is a complex and computationally expensive task. Humans, however, usually solve such tasks quickly and efficiently. We present experiments studying human path planning performance and the cognitive processes and heuristics involved. Twenty-five places were arranged on a regular grid in a large room. Participants were repeatedly asked to solve traveling salesman problems (TSP), i.e., to find the shortest closed loop connecting a start location with multiple target locations. In Experiment 1, we tested whether humans employed the nearest neighbor (NN) strategy when solving the TSP. Results showed that subjects outperform the NN-strategy, suggesting that it is not sufficient to explain human route planning behavior. As a second possible strategy we tested a hierarchical planning heuristic in Experiment 2, demonstrating that participants first plan a coarse route on the region level that is refined during navigation. To test for the relevance of spatial working memory (SWM) and spatial long-term memory (LTM) for planning performance and the planning heuristics applied, we varied the memory demands between conditions in Experiment 2. In one condition the target locations were directly marked, such that no memory was required; a second condition required participants to memorize the target locations during path planning (SWM); in a third condition, additionally, the locations of targets had to retrieved from LTM (SWM and LTM). Results showed that navigation performance decreased with increasing memory demands while the dependence on the hierarchical planning heuristic increased.  相似文献   

7.
A dynamic 3-D virtual environment was constructed for humans as an open-field analogue of Blaisdell and Cook's (2005) pigeon foraging task to determine if humans, like pigeons, were capable of integrating separate spatial maps. Participants used keyboard keys and a mouse to search for a hidden goal in a 4×4 grid of raised cups. During Phase 1 training, a goal was consistently located between two landmarks (Map 1: blue T and red L). During Phase 2 training, a goal was consistently located down and left of a single landmark (Map 2: blue T). Transfer trials were then conducted in which participants were required to make choices in the presence of the red L alone. Cup choices during transfer assessed participants’ strategies: association (from Map 1), generalization (from Map 2), or integration (combining Map 1 and 2). During transfer, cup choices increased to a location which suggested an integration strategy and was consistent with results obtained with pigeons. However, additional analyses of the human data suggested participants initially used a generalization strategy followed by a progressive shift in search behavior away from the red L. This shift in search behavior during transfer was responsible for the changes in cup choices across transfer trials and was confirmed by a control condition. These new analyses offer an alternative explanation to the spatial integration account proposed for pigeons.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

8.
How do young children learn about causal structure in an uncertain and variable world? We tested whether they can use observed probabilistic information to solve causal learning problems. In two experiments, 24‐month‐olds observed an adult produce a probabilistic pattern of causal evidence. The toddlers then were given an opportunity to design their own intervention. In Experiment 1, toddlers saw one object bring about an effect with a higher probability than a second object. In Experiment 2, the frequency of the effect was held constant, though its probability differed. After observing the probabilistic evidence, toddlers in both experiments chose to act on the object that was more likely to produce the effect. The results demonstrate that toddlers can learn about cause and effect without trial‐and‐error or linguistic instruction on the task, simply by observing the probabilistic patterns of evidence resulting from the imperfect actions of other social agents. Such observational causal learning from probabilistic displays supports human children's rapid cultural learning.  相似文献   

9.
Human participants searched in a real environment or interactive 3-D virtual environment open field for four hidden goal locations arranged in a 2 × 2 square configuration in a 5 × 5 matrix of raised bins. The participants were randomly assigned to one of two groups: cues 1 pattern or pattern only. The participants experienced a training phase, followed by a testing phase. Visual cues specified the goal locations during training only for the cues 1 pattern group. Both groups were then tested in the absence of visual cues. The results in both environments indicated that the participants learned the spatial relations among goal locations. However, visual cues during training facilitated learning of the spatial relations among goal locations: In both environments, the participants trained with the visual cues made fewer errors during testing than did those trained only with the pattern. The results suggest that learning based on the spatial relations among locations may not be susceptible to cue competition effects and have implications for standard associative and dual-system accounts of spatial learning.  相似文献   

10.
This paper reports a series of three experiments that tested the “spatial-mapping” and “working-memory” theories of hippocampal function. The experimental designs incorporate separate reference- and working-memory procedures of a water-escape task, using both spatial and non-spatial learning. In Experiment 1 (Reference memory), rats with hippocampal (HC) or cortical (CC) lesions and unoperated (UNOP) rats learned to swim to a rigid visible escape platform while avoiding contact with a floating one. In the nonspatial task, the platforms each occupied any of 8 possible positions in the pool over successive trials but differed in appearance. In the spatial task, the platforms were of identical appearance but the safe one always occupied a single fixed location. The HC rats showed a highly specific spatial learning impairment but did learn to perform consistently above chance towards the end of training. In Experiment 2 (working memory), new groups of rats were trained on similar spatial and nonspatial tasks, but the platform designated correct-in terms of its visual appearance or its spatial location-was randomly changed each day. No animal learned the nonspatial task despite extensive training. Performance on the spatial version unexpectedly revealed an impairment in the CC as well as the HC group relative to the UNOP rats. However, the HCs again performed at above chance levels and demonstrated rapid (I-trial) spatial learning towards the end training. Experiment 3 used a place navigation matching-to-sample task examine spatial working memory further. Each day, an underwater platform was hidden at any of 4 possible locations, and the rats were given 2 trials to search for it. Both UNOP and CC rats located the platform faster on Trial 2 than on Trial 1, even when the inter-trial interval was long as 30min. HC rats were no faster on Trial 2 than on Trial 1. We conclude that hippocampal lesions (1) severely but partially impair spatial but not visual reference memory and (2) give rise to different patterns impairment in different working-mermory tasks. The results are a chal lenge to both the spatial-mapping and working-memory theories.  相似文献   

11.
Active navigation and orientation-free spatial representations   总被引:4,自引:0,他引:4  
In this study, we examined the orientation dependency of spatial representations following various learning conditions. We assessed the spatial representations of human participants after they had learned a complex spatial layout via map learning, via navigating within a real environment, or via navigating through a virtual simulation of that environment. Performances were compared between conditions involving (1) multiple- versus single-body orientation, (2) active versus passive learning, and (3) high versus low levels of proprioceptive information. Following learning, the participants were required to produce directional judgments to target landmarks. Results showed that the participants developed orientation-specific spatial representations following map learning and passive learning, as indicated by better performance when tested from the initial learning orientation. These results suggest that neither the number of vantage points nor the level of proprioceptive information experienced are determining factors; rather, it is the active aspect of direct navigation that leads to the development of orientation-free representations.  相似文献   

12.
13.
The relative influence of place and direction in the Morris water task   总被引:1,自引:0,他引:1  
Previous work from our laboratory has demonstrated that rats display a preference for directional responding over true place navigation in the Morris water task. The present study evaluated the range of situations in which this preference is observed and attempted to identify methods that favor navigation to the precise location of the escape platform in the room. A preference for directional responding over place navigation was observed in a wide range of procedures that included providing extensive training (Experiment 1), providing only platform placement experience in the absence of active swim training (Experiment 2), training navigation to multiple platform locations in a moving platform variant of the task (Experiment 3), and explicitly training navigation to a precise location in the room, versus navigation in a particular direction, regardless of the pool's position in the room (Experiments 4-5). A modest preference for navigation to the precise spatial location of the platform was observed when the pool wall was virtually eliminated as a source of control by filling it to the top with water (Experiment 6).  相似文献   

14.
Wang (2004) showed that people do not always simultaneously update their relationships to real and imagined environments in a dual-environment situation. Employing the same paradigm, we examined whether spatial updating operates on virtual reality as it does on a real or fictitious environment. Participants learned target locations in a real room and a virtual kitchen. Then they turned to face targets either in the room or in the kitchen, while blindfolded, and pointed to the targets before and after turning. Participants kept track of their orientation in both environments equally efficiently, regardless of explicit instructions. In contrast, when the real environment was described verbally but not directly perceived, participants automatically updated the virtual kitchen but not the room. These results suggest that people automatically update a virtual environment as they do a real one when the two environments are superimposed. The automaticity of spatial updating is discussed.  相似文献   

15.
The current study investigated the reference frame used in spatial updating when idiothetic cues to self-motion were minimized (desktop virtual reality). In Experiment 1, participants learned a layout of eight objects from a single perspective (learning heading) in a virtual environment. After learning, they were placed in the same virtual environment and used a keyboard to navigate to two of the learned objects (visible) before pointing to a third object (invisible). We manipulated participants’ starting orientation (initial heading) and final orientation (final heading) before pointing, to examine the reference frame used in this task. We found that participants used the initial heading and the learning heading to establish reference directions. In Experiment 2, the procedure was almost the same as in Experiment 1 except that participants pointed to objects relative to an imagined heading that differed from their final heading in the virtual environment. In this case, pointing performance was only affected by alignment with the learning heading. We concluded that the initial heading played an important role in spatial updating without idiothetic cues, but the representation established at this heading was transient and affected by the interruption of spatial updating; the learning heading, on the other hand, corresponded to an enduring representation which was used consistently.  相似文献   

16.
Participants maneuvered a rat image through a circular region on the computer screen to find a hidden target platform, blending aspects of two well-known spatial tasks. Like the Morris water maze task, participants first experienced a series of learning trials before having to navigate to the hidden target platform from different locations and orientations. Like the dot-location task, they determined the location of a position within a two-dimensional circular region. This procedure provided a way to examine how the number of surrounding cues (1, 2, or 3) affects the memory for spatial location in navigation. Memory performance was better when there were more cues and when targets were close to cues, consistent with the idea that cues bolster fine-grain memory, especially in proximal regions. Early and late measures of bias in memory reflected biases in a direction toward the nearest cue, implicating a cue-based category structure of the navigational space. Collectively, results suggest cue-based spatial memory representations that have been inferred from the dot-location task generalize to a navigation task within a simple, computer-based environment, as demonstrated by the good fits of the spatial model developed for the dot-location task ( Fitting, Wedell, & Allen, 2005, 2007 ).  相似文献   

17.
In a series of three experiments, we probed the accessibility of action knowledge in different versions of a virtual environment (VE) with 7-year-old children and adults. Using a PHANToMTM haptic interface, participants performed a virtual throwing task in which they tried to propel a ball from a table to hit a target on the ground. In Experiments 1 and 2, the virtual scene was presented on a computer monitor, and, in Experiment 3, it was projected by using a video projector so that the vertical and horizontal dimensions and the spatial location of the VE corresponded to the real-world dimensions. Results indicate that action knowledge is accessible even in a nonimmersive VE, but also suggest that the need to recalibrate perceptual-motor mappings constrains the accessibility of this kind of intuitive knowledge.  相似文献   

18.
Proximal versus distal cue use in the Morris water maze is a widely accepted strategy for the dissociation of various problems affecting spatial navigation in rats such as aging, head trauma, lesions, and pharmacological or hormonal agents. Of the limited number of ontogenetic rat studies conducted, the majority have approached the problem of preweanling spatial navigation through a similar proximal-distal dissociation. An implicit assumption among all of these studies has been that the animal's visual system is sufficient to permit robust spatial navigation. We challenged this assumption and have addressed the role of visual acuity in spatial navigation in the preweanling Fischer 344-N rat by training animals to locate a visible (proximal) or hidden (distal) platform using double or null extramaze cues within the testing environment. All pups demonstrated improved performance across training, but animals presented with a visible platform, regardless of extramaze cues, simultaneously reached asymptotic performance levels; animals presented with a hidden platform, dependent upon location of extramaze cues, differentially reached asymptotic performance levels. Probe trial performance, defined by quadrant time and platform crossings, revealed that distal-double-cue pups demonstrated spatial navigational ability superior to that of the remaining groups. These results suggest that a pup's ability to spatially navigate a hidden platform is dependent on not only its response repertoire and task parameters, but also its visual acuity, as determined by the extramaze cue location within the testing environment. The standard hidden versus visible platform dissociation may not be a satisfactory strategy for the control of potential sensory deficits.  相似文献   

19.
By having subjects drive a virtual taxicab through a computer-rendered town, we examined how landmark and layout information interact during spatial navigation. Subject-drivers searched for passengers, and then attempted to take the most efficient route to the requested destinations (one of several target stores). Experiment 1 demonstrated that subjects rapidly learn to find direct paths from random pickup locations to target stores. Experiment 2 varied the degree to which landmark and layout cues were preserved across two successively learned towns. When spatial layout was preserved, transfer was low if only target stores were altered, and high if both target stores and surrounding buildings were altered, even though in the latter case all local views were changed. This suggests that subjects can rapidly acquire a survey representation based on the spatial layout of the town and independent of local views, but that subjects will rely on local views when present, and are harmed when associations between previously learned landmarks are disrupted. We propose that spatial navigation reflects a hierarchical system in which either layout or landmark information is sufficient for orienting and wayfinding; however, when these types of cues conflict, landmarks are preferentially used.  相似文献   

20.
This study examined forgetting in spatial memories acquired in a virtual environment. In the two experiments, participants learned the locations of eight objects. In Experiment 1, the objects were presented as photographs in either a laboratory or in an equivalent virtual environment. Irrespective of learning condition, accuracy of recall of the locations was found to deteriorate after a retention interval of approximately 1 week. In Experiment 2, following virtual learning, three groups of participants performed a series of non‐spatial tasks of low, intermediate or high difficulty. The tasks were presented in a retention interval of 2 hours. A comparison of recall accuracy before and after presentation of the interference tasks indicated that that the groups were not differentially affected by the difficulty of the retroactive interference tasks. However, the groups differed in their subjective assessment of the mental workload involved in the tasks. The results are discussed with reference to a prominent theory of forgetting. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号