首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Approximately 40-60% of BXSB mice have neocortical ectopias, a developmental anomaly characterized by migration of neurons into the neuron-sparse layer I of cortex. Previous studies have shown that ectopic BXSB mice have superior reference, but inferior working, memory on spatial tasks. Female BXSB mice were housed either in an enriched environment or in standard cages at weaning. Subsequently, these animals were tested on four of the Hebb-Williams mazes in a water-based version of this maze. Theoretically, two of the maze configurations placed greater emphasis on reference memory to find the goal, whereas the other two favored working memory. Ectopics reared in standard housing conditions were better than nonectopics on mazes that favored the use of reference memory, but poorer on mazes that favored working memory. In contrast, subjects raised in the enriched environment showed no ectopia differences. A comparison of enriched and standard housing conditions found that the enriched animals had better reference memory but poorer working memory. The latter effect may be because the enriched environment, although more stimulating, did not change in time or space; and other researchers have shown that daily replacement of stimuli in complex environments is correlated with better working memory.  相似文献   

3.
Surprisingly, little theoretical attention has so far been paid to the ‘Comparative Assumption’: the attempt to extrapolate from species to species in psychology (and particularly to the human species). This paper examines the problems and the possibilities inherent in the Comparative Assumption. Perhaps the most important conclusion of the paper is that much more work is needed on this intriguing question.  相似文献   

4.
Spatial pattern learning permits the learning of the location of objects in space relative to each other without reference to discrete visual landmarks or environmental geometry. In the present experiment, we investigated conditions that facilitate spatial pattern learning. Specifically, human participants searched in a real environment or interactive 3-D computer-generated virtual environment open-field search task for four hidden goal locations arranged in a diamond configuration located in a 5 × 5 matrix of raised bins. Participants were randomly assigned to one of three groups: Pattern Only, Landmark + Pattern, or Cues + Pattern. All participants experienced a Training phase followed by a Testing phase. Visual cues were coincident with the goal locations during Training only in the Cues + Pattern group whereas a single visual cue at a non-goal location maintained a consistent spatial relationship with the goal locations during Training only in the Landmark + Pattern group. All groups were then tested in the absence of visual cues. Results in both environments indicated that participants in all three groups learned the spatial configuration of goal locations. The presence of the visual cues during Training facilitated acquisition of the task for the Landmark + Pattern and Cues + Pattern groups compared to the Pattern Only group. During Testing the Landmark + Pattern and Cues + Pattern groups did not differ when their respective visual cues were removed. Furthermore, during Testing the performance of these two groups was superior to the Pattern Only group. Results generalize prior research to a different configuration of spatial locations, isolate spatial pattern learning as the process facilitated by visual cues, and indicate that the facilitation of learning spatial relations among locations by visual cues does not require coincident visual cues.  相似文献   

5.
A real-world open-field search task was implemented with humans as an analogue of Blaisdell and Cook’s (Anim Cogn 8:7–16, 2005) pigeon foraging task and Sturz, Bodily, and Katz’s (Anim Cogn 9:207–217, 2006) human virtual foraging task to 1) determine whether humans were capable of integrating independently learned spatial maps and 2) make explicit comparisons of mechanisms used by humans to navigate real and virtual environments. Participants searched for a hidden goal located in one of 16 bins arranged in a 4 × 4 grid. In Phase 1, the goal was hidden between two landmarks (blue T and red L). In Phase 2, the goal was hidden to the left and in front of a single landmark (blue T). Following training, goal-absent trials were conducted in which the red L from Phase 1 was presented alone. Bin choices during goal-absent trials assessed participants’ strategies: association (from Phase 1), generalization (from Phase 2), or integration (combination of Phase 1 and 2). Results were inconsistent with those obtained with pigeons but were consistent with those obtained with humans in a virtual environment. Specifically, during testing, participants did not integrate independently learned spatial maps but used a generalization strategy followed by a shift in search behavior away from the test landmark. These results were confirmed by a control condition in which a novel landmark was presented during testing. Results are consistent with the bulk of recent findings suggesting the use of alternative navigational strategies to cognitive mapping. Results also add to a growing body of literature suggesting that virtual environment approaches to the study of spatial learning and memory have external validity and that spatial mechanisms used by human participants in navigating virtual environments are similar to those used in navigating real-world environments.  相似文献   

6.
A central issue in education is how to support the spatial thinking involved in learning science, technology, engineering, and mathematics (STEM). We investigated whether and how the cognitive process of analogical comparison supports learning of a basic spatial concept in geoscience, fault. Because of the high variability in the appearance of faults, it may be difficult for students to learn the category-relevant spatial structure. There is abundant evidence that comparing analogous examples can help students gain insight into important category-defining features (Gentner in Cogn Sci 34(5):752–775, 2010). Further, comparing high-similarity pairs can be especially effective at revealing key differences (Sagi et al. 2012). Across three experiments, we tested whether comparison of visually similar contrasting examples would help students learn the fault concept. Our main findings were that participants performed better at identifying faults when they (1) compared contrasting (fault/no fault) cases versus viewing each case separately (Experiment 1), (2) compared similar as opposed to dissimilar contrasting cases early in learning (Experiment 2), and (3) viewed a contrasting pair of schematic block diagrams as opposed to a single block diagram of a fault as part of an instructional text (Experiment 3). These results suggest that comparison of visually similar contrasting cases helped distinguish category-relevant from category-irrelevant features for participants. When such comparisons occurred early in learning, participants were more likely to form an accurate conceptual representation. Thus, analogical comparison of images may provide one powerful way to enhance spatial learning in geoscience and other STEM disciplines.  相似文献   

7.
Expertise acquisition may be a universal attribute of animals. In this study data on foraging efficiency, or expertise, was compared for four species: honeybees (Apis mellifera), oystercatchers (Haematopus ostralegus), chimpanzees (Pan troglodytes), and humans (Homo sapiens). Polynomial regression models were constructed to investigate the relationship between age and foraging efficiency. There was a similar expertise–acquisition function between age and foraging efficiency across species, best described by a quadratic equation. The peak of performance was reached, in all cases, before the average age of death but well after reaching physical maturity and the percentage of lifespan devoted to the skill was more than 10% of the species-typical lifespan.  相似文献   

8.
9.
Olfaction has particular links with learning and memory compared with other sensory cues, due to the interrelations between their neural circuitry. The present study deals with the effects of a putative stressor (i.e. a predator odor) on visuo-spatial learning in mice. Firstly, the results show that a predator odor spread during the Morris water maze task led to learning enhancement. In addition, a stereotaxic approach was used to investigate the involvement of the amygdala in this hippocampus-dependent type of learning. Thus, the performance of mice in visuo-spatial learning under predator odor conditions was dramatically reduced by an ibotenate bilateral amygdala lesion. The involvement of the amygdala was confirmed by a reduced expression of c-fos in the CA1 hippocampus of amygdala-lesioned mice at the end of the learning procedure.Mild exposure to a predator odor during hippocampus-dependent learning therefore leads to an enhancement of performance through the co-activation of the amygdala, probably by a stress mediated mechanism.  相似文献   

10.
Molecular genetic manipulation of the mouse offers the possibility of elucidating the function of individual gene products in neural systems underlying learning and memory. Many extant learning paradigms for mice rely on negative reinforcement, involve simple problems that are relatively rapidly acquired and thus preclude time-course assessment, and may impose the need to undertake additional experiments to determine the extent to which noncognitive behaviors influence the measures of learning. To overcome such limitations, a multiple schedule of repeated acquisition and performance was behaviorally engineered to assess learning vs rote performance within-behavioral test session and within-subject utilizing an apparatus modified from the rat (the repeated acquisition and performance chamber; RAPC). The multiple schedule required mice to learn a new sequence of door openings leading to saccharin availability in the learning component during each session, while the sequence of door openings for the performance component remained constant across sessions. The learning and performance components alternated over the course of each test session, with different auditory stimuli signaling which component was currently in effect. To validate this paradigm, learning vs performance was evaluated in two inbred strains of mice: C57BL/6J and 129/SvJ. The hippocampal dependence of this measure was examined in lesioned C57BL/6J mice. Both strains exhibited longer latencies and higher errors in the learning compared to the performance component and evidenced declines in both measures across the trials of each session, consistent with an acquisition phenomenon. These same measures showed little or no evidence of change in the performance component. Whereas three trials per session were utilized with C57BL/65 mice in each component, behavior of 129/SvJ mice could only be sustained for two trials per component per session, demonstrating differences in testing capabilities between these two strains under these experimental conditions and thus precluding the ability to make systematic strain comparisons of learning capabilities. Hippocampal lesions in C57BL/6J mice resulted in substantially longer latencies and increased errors in the learning but not the performance component, demonstrating the importance of this region to spatial learning as measured in the RAPC. In aggregate, this positive reinforcement-based operant paradigm to evaluate murine spatial learning detects strain differences and hippocampal dependence and permits explicit differentiation of the impact of noncognitive contributions to learning measures on a within-subject, within-session basis.  相似文献   

11.
The present paper explores cross-cultural variation in spatial cognition by comparing spatial reconstruction tasks by Dutch and Namibian elementary school children. These two communities differ in the way they predominantly express spatial relations in language. Four experiments investigate cognitive strategy preferences across different levels of task-complexity and instruction. Data show a correlation between dominant linguistic spatial frames of reference and performance patterns in non-linguistic spatial memory tasks. This correlation is shown to be stable across an increase of complexity in the spatial array. When instructed to use their respective non-habitual cognitive strategy, participants were not easily able to switch between strategies and their attempts to do so impaired their performance. These results indicate a difference not only in preference but also in competence and suggest that spatial language and non-linguistic preferences and competences in spatial cognition are systematically aligned across human populations.  相似文献   

12.
This paper describes the utilization of a desktop virtual environment task, the Computer-Generated (C-G) Arena, in the study of human spatial navigation. First, four experiments examined the efficacy of various training procedures in the C-G Arena. In Experiment 1, participants efficiently located a hidden target after only observing the virtual environment from a fixed position (placement learning). In Experiment 2, participants efficiently located a hidden target after only observing an experimenter search the virtual environment (observational learning). In Experiment 3, participants failed to display alatent learning effect in the virtual environment. In Experiment 4, all training procedures effectively taught participants the layout of the virtual environment, but the observational learning procedure most effectivelytaught participants the location of a hidden target within the environment. Finally, two experiments demonstrated the application of C-G Arena procedures to neuroimaging (Experiment 5) and neuropsychological (Experiment 6) investigations of human spatial navigation.  相似文献   

13.
For decades sequential sampling models have successfully accounted for human and monkey decision-making, relying on the standard assumption that decision makers maintain a pre-set decision standard throughout the decision process. Based on the theoretical argument of reward rate maximization, some authors have recently suggested that decision makers become increasingly impatient as time passes and therefore lower their decision standard. Indeed, a number of studies show that computational models with an impatience component provide a good fit to human and monkey decision behavior. However, many of these studies lack quantitative model comparisons and systematic manipulations of rewards. Moreover, the often-cited evidence from single-cell recordings is not unequivocal and complimentary data from human subjects is largely missing. We conclude that, despite some enthusiastic calls for the abandonment of the standard model, the idea of an impatience component has yet to be fully established; we suggest a number of recently developed tools that will help bring the debate to a conclusive settlement.  相似文献   

14.
15.
Acute stress modulates multiple memory systems in favor of caudate nucleus-dependent stimulus-response and at the expense of hippocampus-dependent spatial learning and memory. We examined in mice and humans whether chronic stress has similar consequences. Male C57BL/6J mice that had been repeatedly exposed to rats ("rat stress") used in a circular hole board task significantly more often a stimulus-response strategy (33%) than control mice (0%). While velocity was increased, differences in latency to exit hole, distance moved or number of holes visited were not observed. Increased velocity and performance during retention trials one day later indicates altered emotionality and motivation to explore in rat stressed mice. Forty healthy young men and women were split into "high chronic stress" and "low chronic stress" groups based on their answers in a chronic stress questionnaire ("Trier Inventory of Chronic Stress"-TICS) and trained in a 2D task. A test trial immediately after training revealed that participants of the "high chronic stress" group used the S-R strategy significantly more often (94%) than participants of the "low chronic stress" group (52%). Verbal self-reports confirmed the strategy derived from participants' choice in the test trial. Learning performance was unaffected by the chronic stress level. We conclude that one consequence of chronic stress is the shift to more rigid stimulus-response learning, that is accompanied by changes in motivational factors in mice.  相似文献   

16.
Category knowledge allows for both the determination of category membership and an understanding of what the members of a category are like. Diagnostic information is used to determine category membership; prototypical information reflects the most likely features given category membership. Two experiments examined 2 means of category learning, classification and inference learning, in terms of sensitivity to diagnostic and prototypical information. Classification learners were highly sensitive to diagnostic features but not sensitive to nondiagnostic, but prototypical, features. Inference learners were less sensitive to the diagnostic features than were classification learners and were also sensitive to the nondiagnostic, prototypical, features. Discussion focuses on aspects of the 2 learning tasks that might lead to this differential sensitivity and the implications for learning real-world categories.  相似文献   

17.
This study investigated the effects of body-centred information on the transfer of spatial learning using a wayfinding task and tasks that specifically probe the route and survey strategies of navigation. The subject learned a route in either a real or a virtual environment (VE; 3D scale model of a Bordeaux neighbourhood) and then reproduced it in the real environment. The involvement of body-based information was manipulated across the spatial learning conditions in the VE: participants learned with full body-based information (treadmill with rotation), with the translational component only (treadmill without rotation) or without body-based information (joystick). In the wayfinding task, the results showed a significant effect of the learning environment with the best scores obtained in the real and treadmill with rotation conditions. There was no significant difference between these two conditions, but the real condition was significantly different from the treadmill without rotation and joystick conditions. Also, the visual flow was sufficient to successfully perform the two egocentric tasks used as well as a direction estimation task (a survey task), in so far as there is no significant difference between the joystick and the treadmill conditions. By contrast, the distance estimates were improved by the treadmill condition including the translational component (but not the rotational component). Finally, our results show that treadmill with rotation promotes the transfer of spatial learning from a virtual to a real environment (compared to joystick and treadmill without rotation). Moreover, body-centred informations are more involved in allocentric (distance estimates) than egocentric navigational strategies.  相似文献   

18.
Young (2-4 months) and aged (14-16 months) male Swiss-Webster albino mice (n = 7 per group) were subcutaneously injected with 20 mg/kg/day dehydroepiandrosterone sulfate (DHEAS), progesterone (P), DHEAS + P, or vehicle control and trained over a 5-day period in a Morris water maze. The subjects were tested 48 hr after training for memory recall as measured by latencies to locate the hidden platform, and trunk blood was collected immediately thereafter. As expected, latency to platform decreased for all groups over the 6 testing days, with aged mice taking longer to reach platform than did young mice. However, results did not support the hypotheses that DHEAS-treated mice would exhibit shorter latencies and that P-treated mice would show longer latencies to platform in comparison with age-matched controls. These results raise doubts about the effectiveness of commercially available supplements claiming to promote enhanced memory in humans.  相似文献   

19.
In 3 experiments, rats were required to find a submerged platform located in 1 corner of an arena that had 2 long and 2 short sides; they were then trained to find the platform in a new arena that also had 2 long and 2 short sides but a different overall shape. The platform in the new arena was easier to find if it was in a corner that was geometrically equivalent, rather than the mirror image, of the corner where it had previously been located. The final experiment revealed that hippocampal lesions impaired rats' ability to find the platform in these arenas. The results suggest that rats did not use the overall shape of the arena to locate the platform but relied on more local cues and that the hippocampus plays a role in navigation based on these cues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号