首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The authors investigated the time course of the processing of metonymic expressions in comparison with literal ones in 2 eye-tracking experiments. Experiment 1 considered the processing of sentences containing place-for-institution metonymies such as the convent in That blasphemous woman had to answer to the convent; it was found that such expressions were of similar difficulty to sentences containing literal interpretations of the same expressions. In contrast, expressions without a relevant metonymic interpretation caused immediate difficulty. Experiment 2 found similar results for place-for-event metonymies such as A lot of Americans protested during Vietnam, except that the difficulty with expressions without a relevant metonymic interpretation was somewhat delayed. The authors argue that these findings are incompatible with models of figurative language processing in which either the literal sense is accessed first or the figurative sense is accessed first. Instead, they support an account in which both senses can be accessed immediately, perhaps through a single under-specified representation.  相似文献   

2.
There is currently much interest in investigating the neural substrates of metaphor processing. In particular, it has been suggested that the right hemisphere plays a special role in the comprehension of figurative (non-literal) language, and in particular metaphors. However, some studies find no evidence of right hemisphere involvement in metaphor comprehension (e.g. [Lee, S. S., & Dapretto, M. (2006). Metaphorical vs. literal word meanings: fMRI evidence against a selective role of the right hemisphere. NeuroImage, 29, 536–544; Rapp, A. M., Leube, D. T., Erb, M., Grodd, W., & Kircher, T. T. J. (2004). Neural correlates of metaphor processing. Cognitive Brain Research, 20, 395–402]). We suggest that lateralization differences between literal and metaphorical language may be due to factors such as differences in familiarity ([Schmidt, G. L., DeBuse, C. J., & Seger, C. A. (2007). Right hemisphere metaphor processing? Characterizing the lateralization of semantic processes. Brain and Language, 100, 127–141]), or difficulty ([Bookheimer, S. (2002). Functional MRI of language: New approaches to understanding the cortical organization of semantic processing. Annual Review of Neuroscience, 25, 151–188; Rapp, A. M., Leube, D. T., Erb, M., Grodd, W., & Kircher, T. T. J. (2004). Neural correlates of metaphor processing. Cognitive Brain Research, 20, 395–402]) in addition to figurativeness. The purpose of this study was to separate the effects of figurativeness, familiarity, and difficulty on the recruitment of neural systems involved in language, in particular right hemisphere mechanisms. This was achieved by comparing neural activation using functional magnetic resonance imaging (fMRI) between four conditions: literal sentences, familiar and easy to understand metaphors, unfamiliar and easy to understand metaphors, and unfamiliar and difficult to understand metaphors. Metaphors recruited the right insula, left temporal pole and right inferior frontal gyrus in comparison with literal sentences. Familiar metaphors recruited the right middle frontal gyrus when contrasted with unfamiliar metaphors. Easy metaphors showed higher activation in the left middle frontal gyrus as compared to difficult metaphors, while difficult metaphors showed selective activation in the left inferior frontal gyrus as compared to easy metaphors. We conclude that the right hemisphere is involved in metaphor processing and that the factors of figurativeness, familiarity and difficulty are important in determining neural recruitment of semantic processing.  相似文献   

3.
语义整合帮助人们在阅读理解中将小信息块整合成一个完整、连贯的句子意义表达, 是阅读理解中非常重要的认知过程。通过对比40多篇句子加工相关的脑机制研究, 发现左侧额下回在fMRI研究中是参与语义整合加工激活概率最高的区域, 而颞叶及后部是MEG研究中激活概率最高的区域。另外, 左侧额下回是如何参与语义整合、它在内隐和外显语义整合中的机制是否相同、以及这种整合加工与一般的控制性加工、词汇启动的关系都是研究者广泛关注的问题。本文对上述问题进行了详细的综述和讨论。  相似文献   

4.
We used fMRI to examine patterns of brain activity associated with component processes of visual word recognition and their relationships to individual differences in reading skill. We manipulated both the judgments adults made on written stimuli and the characteristics of the stimuli. Phonological processing led to activation in left inferior frontal and temporal regions whereas semantic processing was associated with bilateral middle frontal activation. Individual differences in reading subskills were reflected in differences in the degree to which cortical regions were engaged during reading. Variation in sight word reading efficiency was associated with degree of activation in visual cortex. Increased phonological decoding skill was associated with greater activation in left temporo-parietal cortex. Greater reading comprehension ability was associated with decreased activation in anterior cingulate and temporal regions. Notably, associations between reading ability and neural activation indicate that brain/behavior relationships among skilled readers differ from patterns associated with dyslexia and reading development.  相似文献   

5.
The bulk of the research on the neural organization of metaphor comprehension has focused on nominal metaphors and the metaphoric relationships between word pairs. By contrast, little work has been conducted on predicate metaphors using verbs of motion such as “The man fell under her spell.” We examined predicate metaphors as compared to literal sentences of motion such as “The child fell under the slide” in an event-related, functional MRI study. Our results demonstrated greater activation in the left inferior frontal cortex and left lateral temporal lobe for predicate metaphors as compared to literal sentences, while no differences were seen in homologous areas of the right hemisphere. We suggest that the results support a neural organization principle for motion processing in which greater abstraction proceeds along a posterior-to-anterior axis within the lateral portion of the left temporal cortex.  相似文献   

6.
本研究中,以76个科学发明问题(36个带有相关的原型,40个不带有相关的原型)为实验材料,使用功能性磁共振成像(fMRI)技术探讨了科学发明情境中的问题提出以及新近获得的语义对有价值的科学问题提出的启发效应的大脑机制。对有原型提出有价值的科学问题与无原型提出一般问题这两种情况下被试反应的数据进行记录和分析。结果表明两种情况下共同激活的脑区(科学发明情境中问题提出的脑区)为左侧梭状回、左侧内侧额叶、左侧豆状核、右小脑和左侧中央前回。这些共同激活的脑区表明:左侧梭状回也许与各个语句的语义表征有关;左侧内侧额叶也许与所有语句的整体语义表征以及提出各个语义之间的―问题‖有关(左侧豆状核和右小脑配合内侧额叶分别负责控制注意、眼动的指向和注意资源的分配);左侧中央前回可能负责用语句表述出所提出的语义之间的―问题‖。对有原型提出有价值的科学问题和无原型提出有价值的科学问题这两种情况下被试反应的数据进行记录和分析。结果表明有原型提出有价值的科学问题比无原型提出有价值的科学问题显著激活的脑区(科学发明情境中新近获得的语义对有价值的科学问题提出的启发效应的脑区)为左侧楔前叶、左侧额下回、左侧颞中回。这些显著激活的脑区表明:楔前叶与情境记忆的贮存和提取有关;额中回与认知控制和注意资源的分配有关;颞中回与新异性原型的成功激活有关。  相似文献   

7.
Prior research on the neural bases of syntactic comprehension suggests that activation in the left inferior frontal gyrus (lIFG) correlates with the processing of word order variations. However, there are inconsistencies with respect to the specific subregion within the IFG that is implicated by these findings: the pars opercularis or the pars triangularis. Here, we examined the hypothesis that the dissociation between pars opercularis and pars triangularis activation may reflect functional differences between clause-medial and clause-initial word order permutations, respectively. To this end, we directly compared clause-medial and clause-initial object-before-subject orders in German in a within-participants, event-related fMRI design. Our results showed increased activation for object-initial sentences in a bilateral network of frontal, temporal and subcortical regions. Within the lIFG, posterior and inferior subregions showed only a main effect of word order, whereas more anterior and superior subregions showed effects of word order and sentence type, with higher activation for sentences with an argument in the clause-initial position. These findings are interpreted as evidence for a functional gradation of sequence processing within the left IFG: posterior subportions correlate with argument prominence-based (local) aspects of sequencing, while anterior subportions correlate with aboutness-based aspects of sequencing, which are crucial in linking the current sentence to the wider discourse. This proposal appears compatible with more general hypotheses about information processing gradients in prefrontal cortex (Koechlin & Summerfield, 2007).  相似文献   

8.
Memories for emotion-laden stimuli are remembered more accurately than those for neutral stimuli. Although this enhancement reflects stimulus-driven modulation of memory by emotions, functional neuroimaging evidence of the interacting mechanisms between emotions generated by intentional processes, such as semantic elaboration, and memory is scarce. The present fMRI study investigated how encoding-related activation is modulated by emotions generated during the process of semantic elaboration. During encoding with fMRI, healthy young adults viewed neutral (target) pictures either passively or with semantic elaboration. In semantic elaboration, participants imagined background stories related to the pictures. Encoding trials with semantic elaboration were subdivided into conditions in which participants imagined negative, positive, or neutral stories. One week later, memories for target pictures were tested. In behavioral results, memories for target pictures were significantly enhanced by semantic elaboration, compared to passive viewing, and the memory enhancement was more remarkable when negative or positive stories were imagined. fMRI results demonstrated that activations in the left inferior frontal gyrus and dorsal medial prefrontal cortex (dmPFC) were greater during the encoding of target pictures with semantic elaboration than those with passive viewing, and that these activations further increased during encoding with semantic elaboration of emotional stories than of neutral stories. Functional connectivity between the left inferior frontal gyrus and dmPFC/hippocampus during encoding significantly predicted retrieval accuracies of memories encoded with self-generated emotional stories. These findings suggest that networks including the left inferior frontal region, dmPFC, and hippocampus could contribute to the modulation of memories encoded with the emotion generation.  相似文献   

9.
An event-related fMRI study of syntactic and semantic violations   总被引:11,自引:0,他引:11  
We used event-related functional magnetic resonance imaging to identify brain regions involved in syntactic and semantic processing. Healthy adult males read well-formed sentences randomly intermixed with sentences which either contained violations of syntactic structure or were semantically implausible. Reading anomalous sentences, as compared to well-formed sentences, yielded distinct patterns of activation for the two violation types. Syntactic violations elicited significantly greater activation than semantic violations primarily in superior frontal cortex. Semantically incongruent sentences elicited greater activation than syntactic violations in the left hippocampal and parahippocampal gyri, the angular gyri bilaterally, the right middle temporal gyrus, and the left inferior frontal sulcus. These results demonstrate that syntactic and semantic processing result in nonidentical patterns of activation, including greater frontal engagement during syntactic processing and larger increases in temporal and temporo-parietal regions during semantic analyses.  相似文献   

10.
The ability to store and manipulate online information may be enhanced by an inner speech mechanism that draws upon motor brain regions. Neural correlates of this mechanism were examined using event-related functional magnetic resonance imaging (fMRI). Sixteen participants completed two conditions of a verbal working memory task. In both conditions, participants viewed one or two target letters. In the “storage” condition, these targets were held in mind across a delay. Then a probe letter was presented, and participants indicated by button press whether the probe matched the targets. In the “manipulation” condition, participants identified new targets by thinking two alphabetical letters forward of each original target (e.g., f → h). Participants subsequently indicated whether the probe matched the newly derived targets. Brain activity during the storage and manipulation conditions was examined specifically during the delay phase in order to directly compare manipulation versus storage processes. Activations that were common to both conditions, yet disproportionately greater with manipulation, were observed in the left inferior frontal cortex, premotor cortex, and anterior insula, bilaterally in the parietal lobes and superior cerebellum, and in the right inferior cerebellum. This network shares substrates with overt speech and may represent an inner speech pathway that increases activity with greater working memory demands. Additionally, an inverse correlation was observed between manipulation-related brain activity (on correct trials) and test accuracy in the left premotor cortex, anterior insula, and bilateral superior cerebellum. This inverse relationship may represent intensification of inner speech as one struggles to maintain performance levels.  相似文献   

11.
Previous laterality studies have implicated the right hemisphere in the processing of metaphors, however it is not clear if this result is due to metaphoricity per se or another aspect of semantic processing. Three divided visual field experiments varied metaphorical and literal sentence familiarity. We found a right hemisphere advantage for unfamiliar sentences containing distant semantic relationships, and a left hemisphere advantage for familiar sentences containing close semantic relationships, regardless of whether sentences were metaphorical or literal. This pattern of results is consistent with theories postulating predominantly left hemisphere processing of close semantic relationships and predominantly right hemisphere processing of distant semantic relationships.  相似文献   

12.
In this study, we used a novel cognitive paradigm and event-related functional magnetic resonance imaging (ER-fMRI) to investigate the neural substrates involved in processing three different types of sentences. Participants read either metaphoric (Some surgeons are butchers), literal (Some surgeons are fathers), or non-meaningful sentences (Some surgeons are shelves) and had to decide whether they made sense or not. We demonstrate that processing of the different sentence types relied on distinct neural mechanisms. Activation of the left inferior frontal gyrus (LIFG), BA 47, was shared by both non-meaningful and metaphoric sentences but not by literal sentences. Furthermore, activation of the left thalamus appeared to be specifically involved in deriving meaning from metaphoric sentences despite lack of reaction times differences between literals and metaphors. We assign this to the ad hoc concept construction and open-endedness of metaphoric interpretation. In contrast to previous studies, our results do not support the view the right hemispheric is specifically involved in metaphor comprehension.  相似文献   

13.
We investigated processing of metaphoric sentences using event-related functional magnetic resonance imaging (fMRI). Seventeen healthy subjects (6 female, 11 male) read 60 novel short German sentence pairs with either metaphoric or literal meaning and performed two different tasks: judging the metaphoric content and judging whether the sentence has a positive or negative connotation. Laterality indices for 8 regions of interest were calculated: Inferior frontal gyrus (opercular part and triangular part), superior, middle, and inferior temporal gyrus, precuneus, temporal pole, and hippocampus. A left lateralised network was activated with no significant differences in laterality between the two tasks. The lowest degree of laterality was found in the temporal pole. Other factors than metaphoricity per se might trigger right hemisphere recruitment. Results are discussed in the context of lesion and hemifield studies.  相似文献   

14.
We describe an fMRI experiment examining the functional connectivity (FC) between regions of the brain associated with semantic and phonological processing. We wished to explore whether L-Dopa administration affects the interaction between language network components in semantic and phonological categorization tasks, as revealed by FC. We hypothesized that L-Dopa would decrease FC due to restriction of the semantic network. During two test sessions (placebo and L-Dopa) each participant performed two fMRI runs, involving phonological and semantic processing. A number of brain regions commonly activated by the two tasks were chosen as regions if interest: left inferior frontal, left posterior temporal and left fusiform gyri, and left parietal cortex. FC was calculated and further analyzed for effects of either the drug or task. No main effect for drug was found. A significant main effect for task was found, with a greater average correlation for the phonological task than for the semantic task. These findings suggest that language areas are activated in a more synchronous manner for phonological than for semantic tasks. This may relate to the fact that phonological processes are mediated to a greater extent within language areas, whereas semantic tasks likely require greater interaction outside of the language areas. Alternatively, this may be due to differences in the attentional requirements of the two tasks.  相似文献   

15.
16.
ERPs were recorded while subjects were reading short familiar metaphors (e.g., Those fighters are lions), unfamiliar metaphors (Those apprentices are lions), or literal control sentences (Those animals are lions) presented in isolation or preceded by either an irrelevant or relevant context (e.g., They are not idiotic: . . . .” vs. “They are not cowardly: Those fighters are lions”). The terminal word of metaphors elicited larger N400 components than did the terminal word of literal sentences (Experiment 1) suggesting that the (incongruous) literal meaning of metaphors was indeed accessed at some point during comprehension. The analysis of the 600–1000 and 1000–1400 latency bands (Late Positive Components) revealed no significant difference between metaphors and literal sentences. The manipulation of metaphor difficulty (Experiments 2 and 3) also failed to reveal any late effect specifically linked to metaphorical processing. Finally, an effect of the preceding sentence context was found in Experiments 3 and 4, as early as 300 ms following the terminal word onset. Overall, these results support a context-dependent account of metaphor comprehension stating that when contextually relevant, the metaphorical meaning is the only one accessed.  相似文献   

17.
Large-scale neural network for sentence processing   总被引:4,自引:0,他引:4  
Our model of sentence comprehension includes at least grammatical processes important for structure-building, and executive resources such as working memory that support these grammatical processes. We hypothesized that a core network of brain regions supports grammatical processes, and that additional brain regions are activated depending on the working memory demands associated with processing a particular grammatical feature. We used functional magnetic resonance imaging (fMRI) to test this hypothesis by comparing cortical activation patterns during coherence judgments of sentences with three different syntactic features. We found activation of the ventral portion of left inferior frontal cortex during judgments of violations of each grammatical feature. Increased recruitment of the dorsal portion of left inferior frontal cortex was seen during judgments of violations of specific grammatical features that appear to involve a more prominent working memory component. Left posterolateral temporal cortex and anterior cingulate were also implicated in judging some of the grammatical features. Our observations are consistent with a large-scale neural network for sentence processing that includes a core set of regions for detecting and repairing several different kinds of grammatical features, and additional regions that appear to participate depending on the working memory demands associated with processing a particular grammatical feature.  相似文献   

18.
This study looks at whether conventional and anomalous metaphors are processed in different locations in the brain while being read when compared with a literal condition in Mandarin Chinese. We find that conventional metaphors differ from the literal condition with a slight amount of increased activation in the right inferior temporal gyrus. In addition, when the anomalous metaphor condition is compared with the literal condition, increased activation occurs bilaterally in the frontal and temporal gyri. Lastly, the comparison between the anomalous and conventional metaphor conditions shows bilateral activation in the middle frontal gyrus and the precentral gyrus, and right-hemisphere activation in the superior frontal gyrus. Left hemisphere activation is found in the inferior frontal gyrus and fusiform gyrus. The left hemisphere activation in the frontal and temporal gyri point to the recruitment of traditional language-based areas for anomalous metaphor sentences, while the right-hemisphere activation found suggests that remote associations are being formed. In short, our study supports the idea that metaphors are not a homogenous type of figurative language and that distinguishing between different types of metaphors will advance theories of language comprehension.  相似文献   

19.
Using fMRI to study recovery from acquired dysphasia   总被引:7,自引:0,他引:7  
We have used functional magnetic resonance imaging (fMRI) to characterize brain activations associated with two distinct language tasks performed by a 28-year-old woman after partial recovery from dysphasia due to a left frontal hemispheric ischemic stroke. MRI showed that her ischemic lesion extended posteriorly from the left inferior frontal to the perisylvian cortex. fMRI scans of both language tasks revealed substantial differences in activation pattern relative to controls. The nature of this difference was task-specific. During performance of a verbal semantic decision task, the patient, in contrast to controls, activated a network of brain areas that excluded the inferior frontal gyrus (in either hemisphere). A second task involving rhyme judgment was designed to place a heavier cognitive load on language production processes and activated the left inferior frontal gyrus (Broca's area) strongly in normal controls. During this task, the most prominent frontal activation in the patient occurred in the right homologue of Broca's area. Subsequent analysis of this data by methods able to deal with responses of changing amplitude revealed additional, less sustained recruitment by the patient of cortex adjacent to the infarct in the region inferior to Broca's area during rhyming. These results suggest that in addition to changes in cognitive strategy, recovery from dysphasia could be mediated by both the preservation of neuronal networks in and around the infarct and the use of homologous regions in the contralateral hemisphere.  相似文献   

20.
We used fMRI to examine patterns of brain recruitment in 22 healthy seniors, half of whom had selective comprehension difficulty for grammatically complex sentences. We found significantly reduced recruitment of left posterolateral temporal [Brodmann area (BA) 22/21] and left inferior frontal (BA 44/6) cortex in poor comprehenders compared to the healthy seniors with good sentence comprehension, cortical regions previously associated with language comprehension and verbal working memory, respectively. The poor comprehenders demonstrated increased activation of left prefrontal (BA 9/46), right dorsal inferior frontal (BA 44/6), and left posterior cingulate (BA 31/23) cortices for the grammatically simpler sentences that they understood. We hypothesize that these brain regions support an alternate, nongrammatical strategy for processing complex configurations of symbolic information. Moreover, these observations emphasize the crucial role of the left perisylvian network for grammatically guided sentence processing in subjects with good comprehension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号