首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT— Previous studies have demonstrated the involvement of spatial codes in the representation of time and numbers. We took advantage of a well-known spatial modulation (prismatic adaptation) to test the hypothesis that the representation of time is spatially oriented from left to right, with smaller time intervals being represented to the left of larger time intervals. Healthy subjects performed a time-reproduction task and a time-bisection task, before and after leftward and rightward prismatic adaptation. Results showed that prismatic adaptation inducing a rightward orientation of spatial attention produced an overestimation of time intervals, whereas prismatic adaptation inducing a leftward shift of spatial attention produced an underestimation of time intervals. These findings not only confirm that temporal intervals are represented as horizontally arranged in space, but also reveal that spatial modulation of time processing most likely occurs via cuing of spatial attention, and that spatial attention can influence the spatial coding of quantity in different dimensions.  相似文献   

2.
本研究采用复制时距和数字加工双任务,探讨数字大小影响时距知觉的机制。实验首先呈现不同时距的圆点,然后让被试按键复制圆点呈现的时距,与此同时,对屏幕上出现的数字进行命名(实验1)、奇偶数判断(实验2)、大小判断(实验3)。实验结果发现对数字进行奇偶数判断时,数字大小对时距知觉没有影响;进行数字命名和大小判断任务时,数字大小对时距知觉都产生了影响,并且时距不同,数字大小对时距知觉的影响也不同。该结果表明时距知觉的数字效应与数字加工任务和时距长短有关,呈现出动态变化的过程。  相似文献   

3.
This paper examines the automatic processing of the numerical magnitude of two-digit Arabic numbers using a Stroop-like task in school-aged children. Second, third, and fourth graders performed physical size judgments on pairs of two-digit numbers varying on both physical and numerical dimensions. To investigate the importance of synchrony between the speed of processing of the numerical magnitude and the physical dimensions on the size congruity effect (SCE), we used masked priming: numerical magnitude was subliminally primed in half of the trials, while neutral priming was used in the other half. The results indicate a SCE in physical judgments, providing the evidence of automatic access to the magnitude of two-digit numbers in children. This effect was modulated by the priming type, as a SCE only appeared when the numerical magnitude was primed. This suggests that young children needed a relative synchronization of numerical and physical dimensions to access the magnitude of two-digit numbers automatically.  相似文献   

4.
To reproduce the duration of an event precisely, one needs to represent the temporal information without being influenced by other magnitude attributes (e.g., size) of the event. In the present study, however, task-irrelevant numerical magnitude automatically affected participants' reproduction of the duration of a stimulus. In Experiment 1, participants made key-press responses to reproduce the duration of numbers. Reproduced durations were shorter for small numbers (e.g., 1) than for large numbers (e.g., 9). In contrast, in Experiment 2, participants' reproductions of a standard duration were longer when their key-press response was accompanied by visual presentation of a small number than when it was accompanied by presentation of a large number. These results clearly demonstrate that number-time interference extends beyond simple mapping between stimulus categories and response alternatives. The findings support the notion that either a common magnitude representation or closely connected magnitude representations underlie numerical and temporal processing.  相似文献   

5.
In two experiments we investigated mapping of numerical and physical magnitudes with temporal order. Pairs of digits were presented sequentially for a size comparison task. An advantage for numbers presented in ascending order was found when participants were comparing the numbers' physical and numerical magnitudes. The effect was more robust for comparisons of physical size, as it was found using both select larger and select smaller instructions, while for numerical comparisons it was found only for select larger instructions. Varying both the digits' numerical and physical sizes resulted in a size congruity effect, indicating automatic processing of the irrelevant magnitude dimension. Temporal order and the congruency between numerical and physical magnitudes affected comparisons in an additive manner, thus suggesting that they affect different stages of the comparison process.  相似文献   

6.
陈兰  翟细春  周新林 《心理学报》2009,41(5):406-413
关于两位数的加工方式有整体加工说和局部加工说,实验证据主要来自数字数量控制/主动加工任务。本研究主要考察在数字数量自动加工任务中两位数的加工方式。实验一要求被试完成数量大小比较和物理大小比较两个任务,实验二只要求被试完成物理大小比较任务。结果是在数量比较任务和物理比较任务中都存在显著的个位十位一致性效应和数量物理一致性效应,这表明在两位数的数量主动和自动加工任务中均存在整体加工和局部加工两种方式。  相似文献   

7.
The existence of across-notation automatic numerical processing of two-digit (2D) numbers was explored using size comparisons tasks. Participants were Arabic speakers, who use two sets of numerical symbols—Arabic and Indian. They were presented with pairs of 2D numbers in the same or in mixed notations. Responses for a numerical comparison task were affected by decade difference and unit-decade compatibility and global distance in both conditions, extending previous findings with Arabic digits (Nuerk, Weger, & Willmes, 2001). Responses for a physical comparison task were affected by congruency with the numerical size, as indicated by the size congruency effect (SiCE). The SiCE was affected by unit-decade compatibility but not by global distance, thus suggesting that the units and decades digits of the 2D numbers, but not the whole number value were automatically translated into a common representation of magnitude. The presence of similar results for same- and mixed-notation pairs supports the idea of an abstract representation of magnitude.  相似文献   

8.
It has been proposed that time, space, and numbers may be computed by a common magnitude system. Even though several behavioural and neuroanatomical studies have focused on this topic, the debate is still open. To date, nobody has used the individual differences for one of these domains to investigate the existence of a shared cognitive system. Musicians are known to outperform nonmusicians in temporal discrimination tasks. We therefore observed professional musicians and nonmusicians undertaking three different tasks: temporal (participants were required to estimate which of two tones lasted longer), spatial (which line was longer), and numerical discrimination (which group of dots was more numerous). If time, space, and numbers are processed by the same mechanism, it is expected that musicians will have a greater ability, even in nontemporal dimensions. As expected, musicians were more accurate with regard to temporal discrimination. They also gave better performances in both the spatial and the numerical tasks, but only outside the subitizing range. Our data are in accordance with the existence of a common magnitude system. We suggest, however, that this mechanism may not involve the whole numerical range.  相似文献   

9.
Children apply various strategies to mentally solve multi-digit subtraction problems and the efficient use of some of them may depend more or less on numerical magnitude processing. For example, the indirect addition strategy (solving 72–67 as “how much do I have to add up to 67 to get 72?”), which is particularly efficient when the two given numbers are close to each other, requires to determine the proximity of these two numbers, a process that may depend on numerical magnitude processing. In the present study, children completed a numerical magnitude comparison task and a number line estimation task, both in a symbolic and nonsymbolic format, to measure their numerical magnitude processing. We administered a multi-digit subtraction task, in which half of the items were specifically designed to elicit indirect addition. Partial correlational analyses, controlling for intellectual ability and motor speed, revealed significant associations between numerical magnitude processing and mental multi-digit subtraction. Additional analyses indicated that numerical magnitude processing was particularly important for those items for which the use of indirect addition is expected to be most efficient. Although this association was observed for both symbolic and nonsymbolic tasks, the strongest associations were found for the symbolic format, and they seemed to be more prominent on numerical magnitude comparison than on number line estimation.  相似文献   

10.
胡林成  熊哲宏 《心理科学》2013,36(6):1369-1374
意识水平的研究发现,数字量的比较机制与物理刺激比较的机制是一样的;在无意识水平上的研究发现,数字加工存在无意识语义启动现象。我们假设,在数字的物理特性的比较任务中可能存在无意识启动效应和类SNARC效应。实验一的数字比较任务和数字的物理大小比较任务发现,在33毫秒的无意识启动条件下,数字语义比较任务和数字物理大小比较任务中都发现了类SNARC效应、启动效应以及Stroop效应。实验二的数字覆盖面积比较任务中发现,在33毫秒的启动水平,数字比较与数字覆盖面积的比较任务中均存在SNARC效应、Stroop效应和启动效应。  相似文献   

11.
H C Nuerk  U Weger  K Willmes 《Cognition》2001,82(1):B25-B33
Most models of number recognition agree that among other number representations there is a central semantic magnitude representation which may be conceptualized as a logarithmically compressed mental number line. Whether or not this number line is decomposed into different representations for tens and units is, however, controversial. We investigated this issue in German participants in a magnitude comparison (selection) task in which the larger of two visually presented Arabic two-digit numbers had to be selected. Most importantly, we varied unit-decade-compatibility: a number pair was defined as compatible if the decade magnitude comparison and the unit magnitude comparison of the two numbers would lead to the same response (e.g. 52 and 67) and as incompatible if this was not the case (e.g. 47 and 62). While controlling for overall numerical distance, size and other variables, we consistently found compatibility effects. A control experiment showed that this compatibility effect was not due to perceptual presentation characteristics. We conclude that the idea of one single number line representation that does not additionally assume different magnitude representations for tens and units is not sufficient to account for the data. Finally, we discuss why decade effects were not found in other experimental settings.  相似文献   

12.
Understanding the mechanisms supporting our comprehension of magnitude information represents a key goal in cognitive psychology. A major phenomenon employed in the pursuit of this goal has been the physical size congruity effect—namely, the observation that comparing the relative numerical sizes of two numbers is influenced by their relative physical sizes. The standard account of the physical size congruity effect attributes it to the automatic influence of the comparison of irrelevant physical magnitudes on numerical judgments. Here we develop an alternative account of this effect on the basis of the operation of attention in the typical size congruity display and the temporal dynamics of number comparison. We also provide a test of a number of predictions derived from this alternative account by combining a physical size congruity manipulation with a manipulation designed to alter the operation of attention within the typical size congruity display (i.e., a manipulation of the relative onsets of the digits). This test provides evidence consistent with an attentional contribution to the size congruity effect. Implications for our understanding of magnitude and the interactions between attention and magnitude are discussed.  相似文献   

13.
Direct psychophysical scaling procedures presuppose that observers are able to directly relate a numerical value to the sensation magnitude experienced. This assumption is based on fundamental conditions (specified by Luce, 2002), which were evaluated experimentally. The participants' task was to adjust the loudness of a 1-kHz tone so that it reached a certain prespecified fraction of the loudness of a reference tone. The results of the first experiment suggest that the listeners were indeed able to make adjustments on a ratio scale level. It was not possible, however, to interpret the nominal fractions used in the task as "true" scientific numbers. Thus, Stevens's (1956, 1975) fundamental assumption that an observer can directly assess the sensation magnitude a stimulus elicits did not hold. In the second experiment, the possibility of establishing a specific, strictly increasing transformation function that related the overt numerals to the latent mathematical numbers was investigated. The results indicate that this was not possible for the majority of the 7 participants.  相似文献   

14.
Previous research has shown that the fingers’ aperture during grasp is affected by the numerical values of numbers embedded in the grasped objects: Numerically larger digits lead to larger grip apertures than do numerically smaller digits during the initial stages of the grasp. The relationship between numerical magnitude and visuomotor control has been taken to support the idea of a common underlying neural system mediating the processing of magnitude and the computation of object size for motor control. The purpose of the present study was to test whether the effect of magnitude on motor preparation is automatic. During grasping, we asked participants to attend to the colors of the digit while ignoring numerical magnitude. The results showed that numerical magnitude affected grip aperture during the initial stages of the grasp, even when magnitude information was irrelevant to the task at hand. These findings suggest that magnitude affects grasping preparation in an automatic fashion.  相似文献   

15.
Close links exist between the processing of numbers and the processing of space: relatively small numbers are preferentially associated with a left-sided response while relatively large numbers are associated with a right-sided response (the SNARC effect). Previous work demonstrated that the SNARC effect is triggered in an automatic manner and is highly flexible. Besides the left-right dimension, numbers associate with other spatial response mappings such as close/far responses, where small numbers are associated with a close response and large numbers with a far response. In two experiments we investigate the nature of this association. Associations between magnitude and close/far responses were observed using a magnitude-irrelevant task (Experiment 1: automaticity) and using a variable referent task (Experiment 2: flexibility). While drawing a strong parallel between both response mappings, the present results are also informative with regard to the question about what type of processing mechanism underlies both the SNARC effect and the association between numerical magnitude and close/far response locations.  相似文献   

16.
When one masked target (T2) follows another (T1) in close temporal proximity, identification accuracy of the second target is reduced for a period referred to as the attentional blink. Analysis of the attentional blink literature suggests that increasing the difficulty of T1 processing increases the magnitude of the blink. In a previous study that eliminated several untoward features of the typical attentional blink design (e.g., task switching, location switching, and stream contribution), we found no effect on blink magnitude when three levels of T1 difficulty (manipulated in a data-limited manner) were randomly intermixed. Here, when we repeated the previous study using a blocked manipulation of T1 difficulty, which is characteristic of the literature, a significant positive relation between T1 difficulty and blink magnitude was found. Resource allocation put in place to encode T1 in advance of a dual-target trial thus seems to be the critical factor in mediating this relation.  相似文献   

17.
In the current study, we addressed modality-specificity of the flexibility of cognitive control. We compared performance in single-task and mixed-tasks blocks between blocked auditory and visual stimuli assessing alternation costs (single vs. mixed). Mixed blocks comprised task switches only. The tasks consisted of numerical parity, magnitude, and distance judgments about numbers between one and nine without five. A cue indicated the relevant task. The cue–stimulus interval was varied (short vs. long interval) to examine preparation effects. The results indicated higher response times (RTs) and error rates (ERs) in mixed- vs. single-tasks blocks. The alternation costs in ERs were larger for auditory compared to visual stimulus presentation. Moreover, the reduction of RT alternation costs based on increased preparation time was more pronounced for the auditory modality compared to the visual modality. These results suggest a modality-specific influence on processes involved in maintaining and updating task sets in working memory.  相似文献   

18.
In recent years, a growing amount of evidence concerning the relationships between numerical and spatial representations has been interpreted, by and large, in favour of the mental number line hypothesis--namely, the analogue continuum where numbers are spatially represented (Dehaene, 1992; Dehaene, Piazza, Pinel, & Cohen, 2003). This numerical representation is considered the core of number meaning and, accordingly, needs to be accessed whenever numbers are semantically processed. The present study explored, by means of a length reproduction task, whether besides the activation of lateralized spatial codes, numerical processing modulates the mental representation of a horizontal spatial extension. Mis-estimations of length induced by Arabic numbers are interpreted in terms of a cognitive illusion, according to which the elaboration of magnitude information brings about an expansion or compression of the mental representation of spatial extension. These results support the hypothesis that visuo-spatial resources are involved in the representation of numerical magnitude.  相似文献   

19.
Mental rotation and number representation have both been studied widely, but although mental rotation has been linked to higher-level mathematical skills, to date it has not been shown whether mental rotation ability is linked to the most basic mental representation and processing of numbers. To investigate the possible connection between mental rotation abilities and numerical representation, 43 participants completed four tasks: 1) a standard pen-and-paper mental rotation task; 2) a multi-digit number magnitude comparison task assessing the compatibility effect, which indicates separate processing of decade and unit digits; 3) a number-line mapping task, which measures precision of number magnitude representation; and 4) a random number generation task, which yields measures both of executive control and of spatial number representations. Results show that mental rotation ability correlated significantly with both size of the compatibility effect and with number mapping accuracy, but not with any measures from the random number generation task. Together, these results suggest that higher mental rotation abilities are linked to more developed number representation, and also provide further evidence for the connection between spatial and numerical abilities.  相似文献   

20.
The representation of negative numbers was explored during intentional processing (i.e., when participants performed a numerical comparison task) and during automatic processing (i.e., when participants performed a physical comparison task). Performance in both cases suggested that negative numbers were not represented as a whole but rather their polarity and numerical magnitudes were represented separately. To explore whether this was due to the fact that polarity and magnitude are marked by two spatially separated symbols, participants were trained to mark polarity by colour. In this case there was still evidence for a separate representation of polarity and magnitude. However, when a different set of stimuli was used to refer to positive and negative numbers, and polarity was not marked separately, participants were able to represent polarity and magnitude together when numerical processing was performed intentionally but not when it was conducted automatically. These results suggest that notation is only partly responsible for the components representation of negative numbers and that the concept of negative numbers can be grasped only through that of positive numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号