首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors explored application of analytical inverse optimization (ANIO) method to the normal finger forces in unimanual and bimanual prehensile tasks with discrete and continuously changing constraints. The subjects held an instrumented handle vertically with one or two hands. The external torque and grip force changed across trials or within a trial continuously. Principal component analysis showed similar percentages of variance accounted for by the first two principal components across tasks and conditions. Compared to unimanual tasks, bimanual tasks showed significantly more frequent inability to find a cost function leading to a stable solution. In cases of stable solutions, similar second-order polynomials were computed as cost functions across tasks and condition. The bimanual tasks, however, showed significantly worse goodness-of-fit index values. The authors show that ANIO can be used in tasks with slowly changing constraints making it an attractive tool to study optimality of performance in special populations. They also show that ANIO can fail in multifinger tasks, likely due to irreproducible behavior across trials, more likely to happen in bimanual tasks compared to unimanual tasks.  相似文献   

2.
We consider problems of motor redundancy associated with handwriting using the framework of the uncontrolled manifold (UCM) hypothesis. Recent studies of finger coordination during force production tasks have demonstrated that the UCM-hypothesis provides a fruitful framework for analysis of multi-finger actions. In particular, it has been shown that during relatively fast force changes, finger force variance across trials is structured such that a time pattern of total moment produced by the fingers with respect to a point between the two most lateral fingers involved in the task is stabilized while the time pattern of total force may be destabilized. The findings of selective moment stabilization have been interpreted as being conditioned by the experience with everyday motor tasks that commonly pose more strict requirements to stabilization of total moment than to stabilization of total force. We discuss implications of these findings for certain features of handwriting seen in elderly, children, patients with neurological disorders, and forgers.  相似文献   

3.
Relations among finger forces were studied during one-hand and two-hand isometric maximal force production tasks in right- and left-handers. We particularly focused on the phenomena of force deficit during one-hand multi-finger tasks and of bilateral force deficit during two-hand tasks. Ten healthy subjects (five of them left-handed) performed maximal voluntary force production tasks with different finger combinations involving fingers of one of the hands or of both hands together. In one-hand tasks, finger enslaving (forces produced by fingers that were not instructed to produce force) was larger in the dominant hand, while force deficit (drop in individual finger peak force during multi-finger tasks) showed no differences between the hands. An additional drop in finger forces was seen in two-hand tests (bilateral deficit). The magnitude of the bilateral deficit for a hand was larger for tasks involving fewer fingers within the hand and more fingers in the other hand, with a ceiling effect. Smaller bilateral deficit was seen in tasks involving symmetrical finger combinations. In two-hand tasks that could potentially lead to the generation of large total moments in the frontal plane, the hand that was expected to generate larger moments showed larger bilateral deficit, so that the magnitude of the total moment was reduced. These observations suggest that force deficit within a hand and bilateral deficit have different origins but their effects are combined at a certain level of the multi-finger control hierarchy. Bilateral deficit may display task dependence reflecting, in particular, the principle of minimization of secondary moments. A double-representation, mirror-image hypothesis is suggested to provide a neurophysiological basis for the observed patterns of bilateral deficit.  相似文献   

4.
This study aimed to continue our characterization of finger strength and multi-finger interactions across the lifespan to include those in their 60s and older. Building on our previous study of children, we examined young and elderly adults during isometric finger flexion and extension tasks. Sixteen young and 16 elderly, gender-matched participants produced maximum force using either a single finger or all four fingers in flexion and extension. The maximum voluntary finger force (MVF), the percentage contributions of individual finger forces to the sum of individual finger forces during four-finger MVF task (force sharing), and the non-task finger forces during a task finger MVF task (force enslaving), were computed as dependent variables. Force enslaving during finger extension was greater than during flexion in both young and elderly groups. The flexion-extension difference was greater in the elderly than the young adult group. The greater independency in flexion may result from more frequent use of finger flexion in everyday manipulation tasks. The non-task fingers closer to a task finger produced greater enslaving force than non-task fingers farther from the task finger. The force sharing pattern was not different between age groups. Our findings suggest that finger strength decreases over the aging process, finger independency for flexion increases throughout development, and force sharing pattern remains constant across the lifespan.  相似文献   

5.
Abstract

The present study investigates the effect of sensory deprivation of the index and middle finger on motor function of all digits during maximal voluntary force production tasks. A total of 27 subjects performed maximal isometric pressing tasks by using different instructed finger combinations. Subjects completed the same tasks in two visits: a control visit when they had normal sensory feedback in all fingers, and an anesthesia visit when digital nerve blocks were performed on their right index and middle fingers. We evaluated three aspects of motor adaptation on both local (anesthetized) and non-local (non-anesthetized) digits during maximal force production: (1) task-relevant and overall force magnitude, (2) force directional application, and (3) digital individuation and force sharing. Our results indicate that selective digital anesthesia resulted in decreased maximal force magnitude, changed direction of force production, and significant changes extended to non-local digits. The motor weakness and inefficiency revealed in the non-local digits implies that sensory information from each digit can be shared across the digits to assist motor execution within the same hand.  相似文献   

6.
The study examines whether the cost functions reconstructed from experimental recordings are reproducible over time. Participants repeated the trials on three days. By following Analytical Inverse Optimization procedures, the cost functions of finger forces were reconstructed for each day. The cost functions were found to be reproducible over time: application of a cost function C(i) to the data of Day j (i≠j) resulted in smaller deviations from the experimental observations than using other commonly used cost functions. Other findings are: (a) the 2nd order coefficients of the cost function showed negative linear relations with finger force magnitudes; (b) the finger forces were distributed on a 2-dimensional plane in the 4-dimensional finger force space for all subjects and all testing sessions; (c) the data agreed well with the principle of superposition, i.e. the action of object prehension can be decoupled into the control of rotational equilibrium and slipping prevention.  相似文献   

7.
The influence of different positions of the nonperforming (idle) fingers on the maximal force contraction of flexion (master) fingers during key pressing tasks was investigated. Ten participants performed maximal voluntary flexion contractions with various combinations of the index, middle, ring, and little fingers while the idle fingers rested on or were lifted away from the supporting surface. The effect of idle finger posture on total finger force production of master fingers was dependent on finger combination. In general, force production by master fingers was higher when the idle fingers were lifted away from the supporting surface than when they rested on it. The average increase in total force production by master fingers caused by the lifting of idle fingers was +12.4% (from -8.3% to +30.2%). Force-production capability of individual master fingers can be facilitated (as high as 34.1%), unchanged, or depressed (as high as -29.0%) by lifting the idle fingers. The effect of idle finger posture on finger force production of master fingers led to changes in force deficit. Neural, anatomical, and mechanical factors might account for the dependence of finger flexion force of master fingers on the posture of the idle fingers.  相似文献   

8.
The variability of handedness with different tasks is discussed. Experiments are described which show under what conditions handedness becomes evident. Tasks involving three different levels of complexity were used. The simplest task measured the accuracy with which a particular pressure could be reproduced in isometric contraction of the flexors of the index finger on each side in 21 female subjects. In the second situation, the maximum speed of making an attempted tapping movement under the same conditions, was measured in ten of the same subjects using the same muscle group alternating with its antagonists. The same ten subjects were also tested on an aiming task which provided the third level of complexity. The results suggest that differences in performance between the two sides only occur where “timing” or the serial organization of muscle activity is required and that such differences may be due to training.

Whether handedness is inherited or acquired is briefly discussed, and a second series of experiments using the same tasks as before were carried out on one female and nine male subjects. In this instance, the first two tests were used on the big toe of each side as well as the index finger. The results confirm that differences in performance between the two sides on these tasks can be adequately explained in terms of usage or training.

The hypothesis that “timing” is therefore important in the learning of any movement where serial muscle contractions arc involved was tested and confirmed in a third experimental series. The consistency of timing of the application of force in turning a crank handle at maximum speed was measured in five male subjects before and after training. The implications of the results are discussed in relation to other researches on skills.  相似文献   

9.
We investigated age-related differences in finger coordination during rotational hand actions. Two hypotheses based on earlier studies were tested: higher safety margins and lower synergy indices were expected in the elderly. Young and elderly subjects held a handle instrumented with five six-component force sensors and performed discrete accurate pronation and supination movements. The weight of the system was counterbalanced with another load. Indices of synergies stabilizing salient performance variables, such as total normal force, total tangential force, moments produced by these forces, and total moment of force were computed at two levels of a hypothetical control hierarchy, at the virtual finger-thumb level and at the individual finger level. At each level, synergy indices reflected the normalized difference between the sum of the variances of elemental variables and variance of their combined output, both computed at comparable phases over repetitive trials. The elderly group performed the task slower and showed lower safety margins for the thumb during the rotation phase. Overall, the synergy indices were not lower in the elderly group. In several cases, these indices were significantly higher in the elderly than in the younger participants. Hence, both main hypotheses have been falsified. We interpret the unexpectedly low safety margins in the elderly as resulting from several factors such as increased force variability, impaired feed-forward control, and the fact that there was no danger of dropping the object. Our results suggest that in some natural tasks, such as the one used in this study, healthy elderly persons show no impairment, as compared to younger persons, in their ability to organize digits into synergies stabilizing salient performance variables.  相似文献   

10.
Executive processes necessary for flexibly switching between different tasks were studied using a set switching paradigm that requires participants to rapidly switch between different tasks across consecutive trials. Switch cost reflects poorer performance for task-switch trials than for consecutive same-task trials. Significant switch cost was observed even with considerable preparation time before a task-switch, an effect known as residual switch cost. This study tested the hypothesis that one process underlying residual switch cost is inhibition of the previous task-set. We used semantic categorization tasks to compare switch cost between alternating task series (ABA) and nonalternating series (ABC) in order to test the generality of a task-set inhibition effect previously observed with perceptual judgment tasks (Mayr & Keele, in press). The results yielded significant switch cost only for alternating tasks, in both response times and errors resulting from performance of the wrong task. Thus, resolving inhibition associated with previously abandoned task-sets may be the main process underlying residual switch costs, suggesting that task-set inhibition is an important executive control process.  相似文献   

11.
Young and old adults were compared in their efficiency of remembering concurrently presented series of letters and digits in three separate experiments. Instructions and payoffs to vary attentional emphasis across the two types of material in different conditions allowed the examination of attention-operating characteristics in the two age groups. Strategy-independent measures derived from these attention-operating characteristics revealed that older adults exhibited greater performance deficits than young adults when dividing their attention between the two tasks, even though dual-task difficulty was individually adjusted for each subject. It was concluded that either the total amount of attention available for distribution or the efficiency of its allocation decreased with age even though the ability to vary one’s attention between concurrent tasks in response to instructions and payoffs remained intact.  相似文献   

12.
The authors examined and compared the development of oral and manual force control in preschool-aged children. In all, 50 typically developing children (aged 3-5 years) performed maximal strength tasks and submaximal visually guided tasks using tongue elevation, power, and precision grips. Dependent measures included strength, rate of force rise, initial force overshoot, force variability, and rate of force release. The authors performed age- and performance-related analyses. Results revealed similar changes for tongue, fingers, and hands across age- and performance-related measures for strength, initial force overshoot, and rate of force release. There were no significant changes in rate of force rise with increasing age. Force variability measures showed effector-specific changes with decreases across age- and performance-related measures for the hands and fingers but not for the tongue. Changes common across effector systems likely reflect biological development coupled with cognitive-strategic development. Effector-specific changes in force variability likely reflect experience gained through functional tasks influencing biological and cognitive-strategic development. Lack of change in force variability of the tongue suggests that fine control of the tongue is activity specific; thus, nonfunctional tasks are not likely to be sensitive to experience-related biological development.  相似文献   

13.
《Acta psychologica》2013,142(2):155-167
Memory tasks combining storage and distracting tasks performed at either encoding or retrieval have provided divergent results pointing towards accounts of forgetting in terms of either temporal decay or event-based interference respectively. The aim of this study was to shed light on the possible sources of such a divergence that could rely on methodological aspects or deeper differences in the memory traces elicited by the different paradigms used. Methodological issues were explored in a first series of experiments by introducing at retrieval computer-paced distracting tasks that involved articulatory suppression, attentional demand, or both. A second series of experiments that used a similar design was intended to induce differences in the nature of memory traces by increasing the time allowed for encoding the to-be-remembered items. Although the introduction of computer-paced distracting tasks allowed for a strict control of temporal parameters, the first series of experiments replicated the effects usually attributed to event-based interference. However, deeper encoding abolished these effects while time-related effects remained unchanged. These findings suggest that the interplay between temporal factors and event-based interference in forgetting at short term is more complex than expected and could depend on the nature of memory traces.  相似文献   

14.
During the application of fingertip forces with simultaneous flexion of the four fingers, namely index, middle, ring, and little fingers, a stable force sharing among fingers is adopted. Several studies have hypothesized that this stable force sharing is established to minimize unnecessary rotational moments (different from the main flexion moments). This principle labeled "minimization of secondary moments" is presented in the literature as a principle used by the central nervous system to solve musculoskeletal redundancy. However, this principle has only been tested with one solicited degree of freedom and in one finger posture. Our study tests this principle with various degrees of freedom solicited as secondary moments and in two different finger postures. Participants (n=6) were asked to apply a downward vertical force using their four fingers with the forearm placed in two different configurations: a "horizontal" condition (involving flexion/extension and pronation/supination at the wrist joint) and a "vertical" condition (involving flexion/extension and radial/ulnar deviation at the wrist joint). Additionally, two finger postures were tested in each forearm configuration: in the first, the distal inter-phalangeal joints (DIP) were extended and the proximal inter-phalangeal joints (PIP) highly flexed. In the second finger posture, both DIP and PIP joints were flexed. The resultant four-finger force and the relative involvement of each finger in the resultant four-finger force (force sharing) were analyzed. Results showed that the finger postures did not influence the finger force sharing, showing that the minimization of the secondary moment principle was stable among the finger joint angle configurations. Nonetheless, the relative involvement of each finger was dependent on the secondary degree of freedom solicited (pronation/supination vs. radial/ulnar). The modifications of the finger force sharing between the "horizontal" and "vertical" conditions were in accordance with the principle of minimization of the secondary moments.  相似文献   

15.
The authors studied effects of healthy aging on 3 components of the internal force vector during static prehensile tasks. Young and older subjects held an instrumented handle using a 5-digit prismatic grasp under different digit configurations and external torques. Across digit configurations, older subjects showed larger internal normal (grip) and tangential (load-resisting) digit force components and larger internal moment of force. In contrast to earlier reports, safety margin values were not higher in the older subjects. The results show that the increased grip force in older persons is a specific example of a more general age-related problem reflected in the generation of large internal force vectors in prehensile tasks. It is possible that the higher internal forces increase the apparent stiffness of the hand+handle system and, hence, contribute to its stability. This strategy, however, may be maladaptive, energetically wasteful, and inefficient in ensuring safety of hand-held objects.  相似文献   

16.
It has been suggested that the temporal control of rhythmic unimanual movements is different between tasks requiring continuous (e.g., circle drawing) and discontinuous movements (e.g., finger tapping). Specifically, for continuous movements temporal regularities are an emergent property, whereas for tasks that involve discontinuities timing is an explicit part of the action goal. The present experiment further investigated the control of continuous and discontinuous movements by comparing the coordination dynamics and attentional demands of bimanual continuous circle drawing with bimanual intermittent circle drawing. The intermittent task required participants to insert a 400ms pause between each cycle while circling. Using dual-task methodology, 15 right-handed participants performed the two circle drawing tasks, while vocally responding to randomly presented auditory probes. The circle drawing tasks were performed in symmetrical and asymmetrical coordination modes and at movement frequencies of 1Hz and 1.7Hz. Intermittent circle drawing exhibited superior spatial and temporal accuracy and stability than continuous circle drawing supporting the hypothesis that the two tasks have different underlying control processes. In terms of attentional cost, probe RT was significantly slower during the intermittent circle drawing task than the continuous circle drawing task across both coordination modes and movement frequencies. Of interest was the finding that in the intermittent circling task reaction time (RT) to probes presented during the pause between cycles did not differ from the RT to probes occurring during the circling movement. The differences in attentional demands between the intermittent and continuous circle drawing tasks may reflect the operation of explicit event timing and implicit emergent timing processes, respectively.  相似文献   

17.
An in vivo tendon force measurement system was used to evaluate index finger flexor motor control patterns during active finger flexion. During open carpal tunnel release surgery (N=12) the flexor digitorum profundus (FDP) and flexor digitorum superficilias (FDS) tendons were instrumented with buckle force transducers and participants performed finger flexion at two different wrist angles (0 degrees or 30 degrees ). During finger flexion, there was concurrent change of metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joint angles, but the FDP and FDS tendon force changes were not concurrent. For the FDS tendon, no consistent changes in force were observed across participants at either wrist angle. For the FDP tendon, there were two force patterns. With the wrist in a neutral posture, the movement was initiated without force from the finger flexors, and further flexion (after the first 0.5s) was carried out with force from the FDP. With the wrist in a flexed posture, the motion was generally both initiated and continued using FDP force. At some wrist postures, finger flexion was initiated by passive forces which were replaced by FDP force to complete the motion.  相似文献   

18.
We explored the phenomenon of unintentional finger force drift by using visual feedback on the force produced either by explicitly instructed (master) finger pairs or by non-instructed (enslaved) finger pairs. In particular, we drew contrasting predictions from two hypotheses: that force drifts represented consequences of drifts in effector referent coordinates at the level of individual fingers vs. at the level of finger modes (hypothetical variables accounting for the finger force interdependence). Subjects performed accurate force production with two fingers of a hand, index-ring or middle-little. They received visual feedback on the force produced either by the master fingers or by the other two, enslaved, fingers. The feedback scale was adjusted to ensure that the subjects did not know the difference between these two, randomly presented, conditions. Under feedback on the master finger force, enslaved force showed a consistent drift upward. Under feedback on the enslaved finger force, master force showed a consistent drift downward. The subjects were unaware of the force drifts, which could reach over 35% of the initial force magnitude. The data support the hypothesis on drifts in the referent coordinate at the level of individual digits, not finger modes, as the origin of unintentional force drifts. The consistent increase in the relative amount of force produced by the enslaved fingers suggests that the commonly used methods to quantify enslaving should include relatively brief force production tasks.  相似文献   

19.
When switching tasks, performance tends to be worse for n - 2 repetitions than with n - 2 switches. This n - 2 repetition cost has been hypothesized to reflect task-set inhibition: specifically, inhibition of irrelevant category-response mappings involved in response selection. This hypothesis leads to divergent predictions for situations in which all tasks involve the same stimulus categories: An n - 2 repetition cost is predicted when response sets differ across tasks, but not when the response set stays the same. The authors tested these predictions by having subjects perform relative judgements with different reference points. In Experiment 1, the stimulus categories were the same across reference points, but the response set either differed or stayed the same (the multiple- and single-mapping conditions, respectively). An n - 2 repetition cost was found in the multiple-mapping condition but not in the single-mapping condition. Experiment 2 provided evidence against the possibility that these divergent effects reflected differences in memory load. These findings confirm predictions that link n - 2 repetition costs to inhibition of irrelevant category-response mappings.  相似文献   

20.
When one finger changes its force, other fingers of the hand can show unintended force changes in the same direction (enslaving) and in the opposite direction (error compensation). We tested a hypothesis that externally imposed changes in finger force predominantly lead to error compensation effects in other fingers thus stabilizing the total force. A novel device, the “inverse piano”, was used to impose controlled displacements to one of the fingers over different magnitudes and at different rates. Subjects (n = 10) pressed with four fingers at a constant force level and then one of the fingers was unexpectedly raised. The subjects were instructed not to interfere with possible changes in the finger forces. Raising a finger caused an increase in its force and a drop in the force of the other three fingers. Overall, total force showed a small increase. Larger force drops were seen in neighbors of the raised finger (proximity effect). The results showed that multi-finger force stabilizing synergies dominate during involuntary reactions to externally imposed finger force changes. Within the referent configuration hypothesis, the data suggest that the instruction “not to interfere” leads to adjustments of the referent coordinates of all the individual fingers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号