首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate how fundamental gait parameters used in walking (stride length, frequency, speed) are selected by cats we compared stride characteristics selected when walking on a solid surface to those selected when they were constrained to specific stride lengths using a pedestal walkway. Humans spontaneously select substantially different stride length–stride frequency–speed relationships in walking when each of these parameters is constrained, as in walking to a metronome beat (frequency constrained), evenly spaced floor markers (stride length constrained) or on a treadmill (speed constrained). In humans such adjustments largely provide energetic economy under the prescribed walking conditions. Cats show a similar shift in gait parameter selection between conditions as observed in humans. This suggests that cats (and by extension, quadrupedal mammals) also select gait parameters to optimize walking cost-effectiveness. Cats with a profound peripheral sensory deficit (from pyridoxine overdose) appeared to parallel the optimization seen in healthy cats, but without the same level of precision. Recent studies in humans suggest that gait optimization may proceed in two stages – a fast perception-based stage that provides the initial gait selection strategy which is then fine-tuned by feedback. The sensory deficit cats appeared unable to accomplish the feedback-dependent aspect of this process.  相似文献   

2.
The objective of this study was to determine (1) if a novel haptic feedback system could increase the walking speed of older adults while it is being employed during overground walking and (2) whether the frequency at which this feedback was presented would have a differential impact on the ability of users to change walking speed while it was present. Given that peak thigh extension has been found to be a biomechanical surrogate for stride length, and consequently gait speed, vibrotactile haptic feedback was provided to the participants' thighs as a cue to increase peak thigh extension while the effect on gait speed was monitored. Ten healthy community-dwelling older adults (68.4 ± 4.1 years) participated. Participants' peak thigh extension, cadence, normalized stride length and velocity, along with their coefficients of variation (COV) were compared across baseline normal and fast walking (with no feedback) and three different frequency of feedback conditions. The findings indicated that, compared to self-selected normal and fast walking speeds, peak thigh extension was significantly increased when feedback was present and after it was withdrawn in a post-test. An increase in thigh extension led to an increase in stride length and, consequently, an increase in stride velocity compared to normal speed. There were no significant differences in the gait parameters as a function of feedback frequency during its application. In conclusion, while present, the haptic feedback system increased thigh extension and walking speed in older adults regardless of the feedback frequency and when the feedback was withdrawn, participants could maintain an increase in those parameters.  相似文献   

3.
To determine the effects of speed on gait previous studies have examined young adults walking at different speeds; however, the small number of strides may have influenced the results. The aim of this study was to investigate the immediate and long-term impact of continuous slow walking on the mean, variability and structure of stride-to-stride measures. Fourteen young adults walked at a constant pace on a treadmill at three speeds (preferred walking speed (PWS), 90% and 80% PWS) for 30 min each. Spatiotemporal gait parameters were computed over six successive 5-min intervals. Walking slower significantly decreased stride length, while stride period and width increased. Additionally, stride period and width variability increased. Signal regularity of stride width increased and decreased in stride period. Persistence of stride period and width increased significantly at slower speeds. While several measures changed during 30 min of walking, only stride period variability and signal regularity revealed a significant speed and time interaction. Healthy young adults walking at slower than preferred speeds demonstrated greater persistence and signal regularity of stride period while spatiotemporal changes such as increased stride width and period variability arose. These results suggest that different control processes are involved in adapting to the slower speeds.  相似文献   

4.
Dual-task related gait changes have been previously reported for healthy older adults, suggesting that gait control requires attention. Compared to balance control, the involvement of attention in the control of the rhythmic stepping mechanism, as reflected by stride time variability, is not well known. In particular, under dual-task, the relative contributions of a second, attention-demanding task and changes in walking speed remain unclear. Thus, the aims of this study were (1) to assess whether walking with a slow-selected speed or walking while performing an attention-demanding task affected stride time variability in a sample of healthy older participants, and (2) to establish whether stride time variability under dual-task conditions is related either to the decrease of walking speed or the simultaneous attention-demanding task, or to both. Forty-five healthy older participants performed four experimental conditions: (1) walking at a normal self-selected speed, (2) walking at a slow self-selected speed, (3) performing a verbal fluency task when sitting on a chair, and (4) performing the verbal fluency task while walking at self-selected walking speed. Gait parameters were recorded across 15 meters, using Physilog. Results showed a significant dual-task related decrease in mean values of stride velocity, as well as a significant increase in mean values and coefficients of variation of stride time. These dual-task related changes in stride time were explained by the simultaneous performance of the verbal fluency task, the decrease of gait speed and the variability between participants. Although a relationship exists between decreased walking speed and increased stride time variability, the dual-task related increase of stride time variability was also significantly associated with the attention-demanding task, suggesting some attentional control for the rhythmic stepping mechanism of walking in healthy older adults.  相似文献   

5.
Previous studies reported changes in spatiotemporal gait parameters during dual-task performance while walking using a smartphone compared to walking without a smartphone. However, studies that assess muscle activity while walking and simultaneously performing smartphone tasks are scarce. So, this study aimed to assess the effects of motor and cognitive tasks using a smartphone while simultaneously performing gait on muscle activity and gait spatiotemporal parameters in healthy young adults. Thirty young adults (22.83 ± 3.92 years) performed five tasks: walking without a smartphone (single-task, ST); typing on a smartphone keyboard in a sitting position (secondary motor single-task); performing a cognitive task on a smartphone in a sitting position (cognitive single-task); walking while typing on a smartphone keyboard (motor dual-task, mot-DT) and walking while performing a cognitive task on a smartphone (cognitive dual-task, cog-DT). Gait speed, stride length, stride width and cycle time were collected using an optical motion capture system coupled with two force plates. Muscle activity was recorded using surface electromyographic signals from bilateral biceps femoris, rectus femoris, tibialis anterior, gastrocnemius medialis, gastrocnemius lateralis, gluteus maximus and lumbar erector spinae. Results showed a decrease in stride length and gait speed from the single-task to cog-DT and mot-DT (p < 0.05). On the other hand, muscle activity increased in most muscles analyzed from single- to dual-task conditions (p < 0.05). In conclusion, performing a cognitive or motor task using a smartphone while walking promote a decline in spatiotemporal gait parameters performance and change muscle activity pattern compared to normal walking.  相似文献   

6.
This investigation compared spatial and temporal gait movement parameters of a sample of individuals with Down syndrome (n=12) and one of individuals without disabilities (n=12). All participants were evaluated on responses to a preferred pace and fast walk with the GAITRite Electronic Walkway. Spatial outcomes included step and stride length, step and stride width, toe-in/toe-out, and base of support. Temporal outcomes included step time, velocity, single and double leg support time, stance, and swing time. There were significant group differences for step length, step width, stride length, and velocity in the preferred walk condition. Significant group differences for step length, step width, and stride length were observed in the fast walk condition. Percentage differences also indicated lower scores for all spatial and temporal variables in relation to the control group. The ability to control gait movements appears to reflect earlier movement experiences, so it may be possible to use variable sensory feedback and specific training to modify and adjust movement responses and improve gait performance in Down syndrome.  相似文献   

7.
ABSTRACT The decline in frontal cognitive functions contributes to alterations of gait and increases the risk of falls in patients with dementia, a category which included Alzheimer's disease (AD). The objective of the present study was to compare the gait parameters and the risk of falls among patients at different stages of AD, and to relate these variables with cognitive functions. This is a cross-sectional study with 23 patients with mild and moderate AD. The Clinical Dementia Rating was used to classify the dementia severity. The kinematic parameters of gait (cadence, stride length, and stride speed) were analyzed under two conditions: (a) single task (free gait) and (b) dual task (walking and counting down). The risk of falls was evaluated using the Timed Up-and-Go test. The frontal cognitive functions were evaluated using the Frontal Assessment Battery (FAB), the Clock Drawing Test (CDT) and the Symbol Search Subtest. The patients who were at the moderate stage suffered reduced performance in their stride length and stride speed in the single task and had made more counting errors in the dual task and still had a higher fall risk. Both the mild and the moderate patients exhibited significant decreases in stride length, stride speed and cadence in the dual task. Was detected a significant correlation between CDT, FAB, and stride speed in the dual task condition. We also found a significant correlation between subtest Similarities, FAB and cadence in the dual task condition. The dual task produced changes in the kinematic parameters of gait for the mild and moderate AD patients and the gait alterations are related to frontal cognitive functions, particularly executive functions.  相似文献   

8.
It is common sense that walking on sand poses challenges to postural control. However, there are no studies quantifying the kinematics of sand walking compared to other types of postural perturbations such as unstable shoes. The aim of the study was to investigate differences in walking kinematics during walking on solid ground, in unstable shoes and on unstable surfaces. Nineteen healthy young adults (23.5 ± 1.5 years) performed three different walking tasks: 1) walking at preferred speed while wearing regular shoes; 2) Walking at preferred speed wearing Masai Barefoot Technology shoes and 3) barefoot walking at preferred speed on a large sand grave. Full-body kinematics were recorded during all conditions using an inertial motion capture system. Basic gait parameters (walking speed, stride length and duration), relative vertical center-of-mass position (rvCOM), and ankle, knee and hip joint angles in the sagittal plane were compared across the tasks through statistical parametric mapping over the course of full walking cycles. Participants presented similar walking speed, as well as stride length and duration across different conditions (p > 0.05). However, walking on sand reduced the rvCOM (p < 0.05), while also requiring greater ankle plantarflexion during stance phase (p < 0.05), as well as greater knee and hip flexion during leg swing and initial contact when compared to the other conditions (p < 0.05). It was concluded that walking on sand substantially changes walking kinematics, and may cause greater postural instability than unstable shoes. Therefore, walking on sand can be an alternative to improve postural control in patients undergoing walking rehabilitation.  相似文献   

9.
ABSTRACT

The decline in frontal cognitive functions contributes to alterations of gait and increases the risk of falls in patients with dementia, a category which included Alzheimer's disease (AD). The objective of the present study was to compare the gait parameters and the risk of falls among patients at different stages of AD, and to relate these variables with cognitive functions. This is a cross-sectional study with 23 patients with mild and moderate AD. The Clinical Dementia Rating was used to classify the dementia severity. The kinematic parameters of gait (cadence, stride length, and stride speed) were analyzed under two conditions: (a) single task (free gait) and (b) dual task (walking and counting down). The risk of falls was evaluated using the Timed Up-and-Go test. The frontal cognitive functions were evaluated using the Frontal Assessment Battery (FAB), the Clock Drawing Test (CDT) and the Symbol Search Subtest. The patients who were at the moderate stage suffered reduced performance in their stride length and stride speed in the single task and had made more counting errors in the dual task and still had a higher fall risk. Both the mild and the moderate patients exhibited significant decreases in stride length, stride speed and cadence in the dual task. Was detected a significant correlation between CDT, FAB, and stride speed in the dual task condition. We also found a significant correlation between subtest Similarities, FAB and cadence in the dual task condition. The dual task produced changes in the kinematic parameters of gait for the mild and moderate AD patients and the gait alterations are related to frontal cognitive functions, particularly executive functions.  相似文献   

10.
This article describes developmental changes in gait velocity and relates these changes to gait parameters that index postural stability (step width and lateral acceleration) and two components of velocity (cadence and step length). Five children were observed longitudinally over a 2-year period after onset of independent walking. Their range of speed increased threefold in the first 6 months of independent walking and then remained constant. In contrast, step width decreased approximately twofold. Whereas in adults, cadence and step length contribute approximately equally to speed, when infants first begin to walk independently, increase in velocity is due mostly to increased step length. After 5 months of independent walking, the pattern reverses, and increase in velocity is due primarily to increased cadence. The pattern remains constant over the next 18 months. From a developmental point of view, the data lead us to interpret early walking (the first 5 months) as a process of integration of postural constraints into the dynamic necessities of gait movement. A second phase, beginning after 4 to 5 months of independent walking, is considered to be a tuning phase characterized by a more precise adjustment of the gait parameters.  相似文献   

11.
This article describes developmental changes in gait velocity and relates these changes to gait parameters that index postural stability (step width and lateral acceleration) and two components of velocity (cadence and step length).

Five children were observed longitudinally over a 2-year period after onset of independent walking. Their range of speed increased threefold in the first 6 months of independent walking and then remained constant. In contrast, step width decreased approximately twofold. Whereas in adults, cadence and step length contribute approximately equally to speed, when infants first begin to walk independently, increase in velocity is due mostly to increased step length. After 5 months of independent walking, the pattern reverses, and increase in velocity is due primarly to increased cadence. The pattern remains constant over the next 18 months. From a developmental point of view, the data lead us to interpret early walking (the first 5 months) as a process of integration of postural constraints into the dynamic necessities of gait movement. A second phase, beginning after 4 to 5 months of independent walking, is considered to be a tuning phase characterized by a more precise adjustment of the gait parameters.  相似文献   

12.
This controlled study examined the effects of dividing attention between walking and the performance of a secondary cognitive task in people with mild to moderate Parkinson's disease (Hoehn and Yahr stages 2-3.5). Participants in the training group (n=6) received 30 min divided attention training in taking big steps while simultaneously performing serial three subtractions. Participants in the control group (n=6) received no training. Stride length, gait velocity and accurate enumeration rate were measured at baseline, immediate after training and 30 min after training under single-task (walk only or subtract only) and dual-task (walk and subtract) conditions. Data were also collected at training in the training group. Immediate improvement in stride length and gait velocity was found when instruction was given to participants to pay equal attention to gait and subtractions (p=0.001, p=0.05) compared to baseline. Short-term improvement in the gait variables was also found after training when compared to the controls (p=0.001, p=0.001). Nevertheless, there was no significant difference in the accurate enumeration rate. Based on the findings, we conclude that divided attention can be used as a strategy to improve slow and short-stepped gait under dual-task conditions. Divided attention can also be used in gait training for short term stride length and gait velocity improvement.  相似文献   

13.
In recent years, there has been considerable interest in the effects of auditory and visual distractions on pedestrian ambulation. A fundamental temporal characteristic of ambulation is the temporal fluctuation of the stride interval. In this paper, we investigate the stationarity of stride interval time series when people are exposed to different forms of auditory and visual distractions. An increase in nonstationary behavior may be suggestive of divided attention and more frequent central modulation of locomotion, both of which may have ramifications on pedestrian vigilance and responsiveness to environmental perturbations. One group of fifteen able-bodied (6 females) young adult participants completed a music protocol (overground walking with and without music). A second group of fifteen (7 females) did a television protocol (treadmill walking while watching TV with and without sound). Three walking trials, each 15min in duration, were performed at each participant's comfortable walking speed, with force sensitive resistors under the heel of each foot. Using the reverse arrangements test, the vast majority of time series were nonstationary, with a time-varying mean as the principal source of nonstationarity. Furthermore, the television trial with sound had the greatest number of nonstationarities followed by overground walking while listening to music. We discuss the possibility that these conditions measurably affect gait dynamics through a subconscious synchronization to external rhythms or a cyclic distraction followed by a period of increased conscious correction of gait timing. Our findings suggest that the regulation of stride timing is particularly susceptible to constant, time-evolving auditory stimuli, but that normal pacing can be restored quickly upon stimulus withdrawal. These kinds of sensory distractions should thus be carefully considered in studies of pedestrian ambulation.  相似文献   

14.
Load carriage can be harmful for workers, and alternative interventions to reduce back pain while walking and carrying loads are necessary. Unstable shoes have been used to improve balance and reduce back pain, but it is unknown whether walking wearing unstable shoes while carrying loads anteriorly causes excessive trunk extensors muscle activation. The aim of this study was to investigate the effects of different shoe types and anterior load carriage on gait kinematics and lumbar electromyographic (EMG) activity. Fourteen adults that predominantly walk or stand during the work day were asked to walk with and without carrying 10% of body mass anteriorly while wearing regular walking shoes (REG) and unstable shoes (MBT). The effects of shoe type, load carriage, and shoe × load interactions on the longissimus thoracis (LT) and iliocostalis lumborum (IC) EMG, stride duration, and stride frequency were assessed. MBT shoes induced a significant increase in LT (44.4 ± 35%) and IC EMG (33.0 ± 32%, p < .005), while load carriage increased LT (58.5 ± 41%) and IC EMG (55.1 ± 32%, p < .001). No significant shoe × load interaction was found (p>.05). However, walking wearing MBT shoes while carrying loads induced a 46 ± 40% higher EMG activity compared to walking wearing MBT shoes without load carriage. No effects of shoes or load carriage were found on stride duration and stride frequency. It was concluded that walking wearing MBT shoes and carrying 10% of total body mass induced greater activation of trunk extensors muscle compared to these factors in isolation, such a combination may not influence gait patterns.  相似文献   

15.
During free walking, gait is automatically adjusted to provide optimal mechanical output and minimal energy expenditure; gait parameters, such as cadence, fluctuate from one stride to the next around average values. It was described that this fluctuation exhibited long-range correlations and fractal-like patterns. In addition, it was suggested that these long-range correlations disappeared if the participant followed the beep of metronome to regulate his or her pace. Until now, these fractal fluctuations were only observed for stride interval, because no technique existed to adequately analyze an extended time of free walking. The aim of the present study was to measure walking speed (WS), step frequency (SF) and step length (SL) with high accuracy (<1 cm) satellite positioning method (global positioning system or GPS) in order to detect long-range correlations in the stride-to-stride fluctuations. Eight participants walked 30 min under free and constrained (metronome) conditions. Under free walking conditions, DFA (detrended fluctuation analysis) and surrogate data tests showed that the fluctuation of WS, SL and SF exhibited a fractal pattern (i.e., scaling exponent alpha: 0.5 < alpha < 1) in a large majority of participants (7/8). Under constrained conditions (metronome), SF fluctuations became significantly anti-correlated (alpha < 0.5) in all participants. However, the scaling exponent of SL and WS was not modified. We conclude that, when the walking pace is controlled by an auditory signal, the feedback loop between the planned movement (at supraspinal level) and the sensory inputs induces a continual shifting of SF around the mean (persistent anti-correlation), but with no effect on the fluctuation dynamics of the other parameters (SL, WS).  相似文献   

16.
Biomechanical motor patterns in normal walking   总被引:10,自引:0,他引:10  
Motor patterns in normal human gait are evident in several biomechanical and EMG analyses over the stride period. Some of these patterns are invariant over the stride period with changes of cadence, whole others are closely correlated with speed changes. The findings for slow, natural, and fast walking are summarized: 1. Joint angle patterns over the stride period are quite invariant, and do not change with cadence; 2. Moment of force patterns at the ankle are least variable and quite consistent at all speeds; 3. A recently defined support moment is quite consistent at all speeds. 4. Moments at the knee and hip are highly variable at all cadences but decrease their variability as cadence increases; 5. Mechanical power patterns at all joints show consistent timing over the stride period; 6. EMG profiles of 5 muscles show consistent timing over the stride, but the amplitude increases as walking speed increases. Arguments are presented to support the concept that walking speed is largely controlled by gain and that the timing of the motor patterns, which is extremely tightly synchronized with the anatomical position, is under major afferent control.  相似文献   

17.
The authors examined the changes in bipedal gait of toddlers in the anteroposterior (AP) and mediolateral (ML) directions, as a set, at the onset of independent gait and 1 month after onset. Two groups with distinctly different dynamic resources were studied: 8 toddlers with typical development (TD) and 8 toddlers with Down syndrome (DS). Three-dimensional kinematic data were collected, and gait parameters, such as walking speed, stride length, and stride frequency, as well as the ratio of exchange between potential energy and kinetic energy of the center of mass (COM), were calculated. Displacement of the COM in the AP and ML directions were also analyzed. For some gait variables, toddlers with DS seemed to show more mature values at walking onset than their peers with TD. Those group differences reversed and increased by Visit 2. When the authors considered the motion of the COM of the system, it became clear that the qualitative differences between those groups were characterized primarily by constraints in the ML direction. The authors propose that establishment of coupling between AP and ML oscillations is a key component for the emergence of independent bipedal walking for both populations.  相似文献   

18.
Sensorimotor synchronization has been used in the rehabilitation of gait, yet much remains unknown regarding the optimal use of this technique. The purpose of this study was to test the hypothesis that adding small amounts of variability to the motion of a vertically oscillating treadmill would affect the behavior of healthy walkers. Sixteen young adults walked on a treadmill and pneumatically actuated platform for one control trial (no oscillation) and eight trials in which the walking surface oscillated in the vertical direction under different conditions of variability. During the oscillation trials, the mean frequency of oscillation was equal to the preferred step frequency of the participant, but each individual cycle period was allowed to vary within a pre-determined range from 0% (no variability) to ±25% (high variability) of the mean cycle period. The amount of variance of each cycle period within each condition was drawn randomly from a white noise generator. Synchronization was improved when a small amount of noise was added to the platform motion but synchronization significantly decreased at higher levels of noise. Coefficient of variation of stride duration was relatively unchanged at lower levels of variability, but increased significantly at higher levels of variability. Statistical persistence of stride duration was significantly reduced during all trials with vertical oscillation relative to normal walking, but was not significantly altered by variability in the treadmill oscillation. These results suggest that the addition of a small amount of random variability to the cycle period of an oscillator may enhance sensorimotor synchronization of gait to an external signal. These data may have implications for the use of synchronization in a therapeutic setting.  相似文献   

19.
Gait regulation patterns were examined under various visual conditions in order to determine whether speed information provided by peripheral vision is taken into account in gait adjustments. Nine subjects walking toward a visual target on the ground were required to place one foot exactly on it. peripheral vision was either restricted to a 12 degrees angle or decorrelated, corresponding to a moving speed greater than the actual walking speed. Decorrelation was obtained by placing the subject on a treadmill moving in the walking direction. The results show, by comparison with the control condition, that the restriction of peripheral visual information did not affect the accuracy of the foot positioning, whereas decorrelated conditions affected it significantly: we noted that the gait regulation was triggered early on and showed a very stable pattern so that the distance to the target was consistently underestimated. This suggest that, although visual speed information is not indispensable in this kind of task, it is nevertheless taken into account in stride adjustments when the whole visual field is available. The results are discussed, in the context of a time-based approach to locomotor activity, in relation to the possible visual methods that might be used in obtaining information about time to contact the target.  相似文献   

20.
Cognitive-motor dual-tasking involves concurrent performance of two tasks with distinct cognitive and motor demands and is associated with increased fall risk. In this hypothesis-driven study, younger (18–30 years, n = 24) and older (60–75 years, n = 26) adults completed six walking tasks in triplicate. Participants walked forward and backward along a GAITRite mat, in isolation or while performing a verbal fluency task. Verbal fluency tasks involved verbally listing or typing on a smartphone as many words as possible within a given category (e.g., clothes). Using repeated measures MANOVA models, we examined how age, method of fluency task (verbal or texting), and direction of walking altered dual-task performance. Given that tasks like texting and backward walking require greater cognitive resources than verbal and forward walking tasks, respectively, we hypothesized older adults would show higher dual-task costs (DTCs) than younger adults across different task types and walking directions, with degree of impairment more apparent in texting dual-task trials compared to verbal dual-task trials. We also hypothesized that both age groups would have greater DTCs while walking backward than while walking forward, regardless of task.Independent of age group, velocity and stride length were reduced for texting compared to the verbal task during both forward and backward walking; cadence and velocity were reduced while walking forward compared to walking backward for the texting task; and stride length was reduced for forward walking compared to backward walking during the verbal task. Younger adults performed better than older adults on all tasks with the most pronounced differences seen in velocity and stride length during forward-texting and backward-texting. Interaction effects for velocity and stride length while walking forward indicated younger adults performed better than older adults for the texting task but similarly during the verbal task. An interaction for cadence during the verbal task indicated younger adults performed better than older adults while walking backward but similarly while walking forward.In summary, older adults experienced greater gait decrement for all dual-task conditions. The greater declines in velocity and stride length in combination with cadence being stable suggest reductions in velocity during texting were due to shorter strides rather than a reduced rate of stepping. Contrary to our hypotheses, we found greater DTCs while walking forward rather than backward, which may be due to reduced gait performance during single-task backward walking; thus, further decrements with dual-tasking are unlikely. These findings underscore the need for further research investigating fall risk potential associated with texting and walking among aging populations and how interventions targeting stride length during dual-task circumstances may improve performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号