首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

How do people automatize their dual-task performance through bottleneck bypassing (i.e., accomplish parallel processing of the central stages of two tasks)? In the present work we addressed this question, evaluating the impact of sensory–motor modality compatibility—the similarity in modality between the stimulus and the consequences of the response. We hypothesized that incompatible sensory–motor modalities (e.g., visual–vocal) create conflicts within modality-specific working memory subsystems, and therefore predicted that tasks producing such conflicts would be performed less automatically after practice. To probe for automaticity, we used a transfer psychological refractory period (PRP) procedure: Participants were first trained on a visual task (Exp. 1) or an auditory task (Exp. 2) by itself, which was later presented as Task 2, along with an unpracticed Task 1. The Task 1–Task 2 sensory–motor modality pairings were either compatible (visual–manual and auditory–vocal) or incompatible (visual–vocal and auditory–manual). In both experiments we found converging indicators of bottleneck bypassing (small dual-task interference and a high rate of response reversals) for compatible sensory–motor modalities, but indicators of bottlenecking (large dual-task interference and few response reversals) for incompatible sensory–motor modalities. Relatedly, the proportion of individuals able to bypass the bottleneck was high for compatible modalities but very low for incompatible modalities. We propose that dual-task automatization is within reach when the tasks rely on codes that do not compete within a working memory subsystem.

  相似文献   

2.
采用心理不应期研究范式, 两个反应时实验检测了注意力资源分配的特征以及双任务的相互干扰机制。每次实验中, 要求被试快速、相继对高低音辨别任务(T1)和Stroop任务(T2)作出选择性反应, T1和T2间采用6种不同的时间间隔(SOA), 以系统考察不同SOA条件下两个任务的反应时走势。结果发现:(1) 在重叠的双任务情境中, T1的中枢加工导致在T2上出现显著的PRP效应, T2的中枢反应选择对T1的反应选择和反应执行加工同样产生显著的影响。SOA以及T2的难度与复杂度实质性地影响了T1的反应选择和反应执行加工。(2) 当两个任务同时需要进行中枢反应选择加工时, 一个任务占用更多的注意资源将导致另一任务获得较少的注意资源, 注意资源量的多寡直接决定了该任务的加工效率。(3) 两个任务的加工相互影响、相互制约, 这种制约机制不仅仅存在于中枢反应选择阶段, 在反应执行阶段仍然存在。  相似文献   

3.
The standard bottleneck model of the psychological refractory period (PRP) assumes that the selection of the second response is postponed until the first response has been selected. Accordingly, dual-task interference is attributed to a single central-processing bottleneck involving decision and response selection, but not the execution of the response itself. In order to critically examine the assumption that response execution is not part of this bottleneck, we systematically manipulated the temporal demand for executing the first response in a classical PRP paradigm. Contrary to the assumption of the standard bottleneck model, this manipulation affected the reaction time for Task 2. Specifically, reaction time for Task 2 increased with execution time for Task 1. This carryover effect from Task 1 to Task 2 provides evidence for the notion that response execution can be part of the processing bottleneck.  相似文献   

4.
In the psychological refractory period (PRP) paradigm, two unmasked targets are presented, each of which requires a speeded response. Response times to the second target (T2) are slowed when T2 is presented shortly after the first target (T1). Electrophysiological studies have previously shown that the P3 event-related potential component is not delayed during T2 response slowing in the PRP paradigm, but that the lateralized readiness potential is delayed, which suggests a bottleneck on response selection operations but not on stimulus identification. Recently, researchers (Arnell & Duncan, 2002; Jolicoeur & Dell'Acqua, 1999) observed T2 response slowing in an encoding-speeded response (ESR) paradigm where T2 followed a masked T1 that required identification but not a speeded response. T2 response slowing in the ESR paradigm is often indistinguishable from that in the PRP paradigm, prompting some researchers to postulate a common processing bottleneck for the two paradigms. With the use of the ESR paradigm, we observed T2 response slowing and, in contrast to the PRP paradigm, we also observed corresponding P3 delays. The results suggest that dissociable bottlenecks underlie the dual-task costs from the two paradigms.  相似文献   

5.
Can practice eliminate the psychological refractory period effect?   总被引:6,自引:0,他引:6  
Can people learn to perform two tasks at the same time without interference? To answer this question, the authors trained 6 participants for 36 sessions in a Psychological Refractory Period (PRP) experiment, where Task 1 required a speeded vocal response to an auditory stimulus and Task 2 required a speeded manual response to a visual stimulus. The large PRP effect found initially (353 ms in Session 1) shrank to only about 40 ms over the course of practice, disappearing entirely for 1 of the 6 participants. This reduction in the PRP effect with practice is considerably larger than has been previously reported. The obtained pattern of factor interactions between stimulus onset asynchrony and each of three task difficulty manipulations (Task 1 judgment difficulty, Task 2 stimulus contrast, and Task 2 mapping compatibility) supports a postponement (bottleneck) account of dual-task interference, both before and after practice.  相似文献   

6.
Why practice reduces dual-task interference   总被引:5,自引:0,他引:5  
M. A. Van Selst, E. Ruthruff, and J. C. Johnston (1999) found that practice dramatically reduced dual-task interference in a Psychological Refractory Period (PRP) paradigm with 1 vocal response and 1 manual response. Results from 3 further experiments using the highly trained participants of M. A. Van Selst et al. (1999) support 4 main conclusions: (a) A processing bottleneck exists even after extensive practice; (b) the principal cause of the reduction in PRP interference with practice is shortening of Task 1 bottleneck stages; (c) a secondary cause is that 1 or more, but not all, of the Task 2 substages that are postponed before practice are not postponed after practice (i.e., become automatized); and (d) the extent of PRP reduction with practice depends on the modalities of the 2 responses. A control experiment with 2 manual response tasks showed less PRP reduction with practice than that found by Van Selst et al.  相似文献   

7.
The psychological refractory period (PRP) paradigm was used to test whether older participants suffer from input interference in dual-task situations. Young (24 years) and older (57 years) adults gave speeded responses to 2 successively presented stimuli. The results showed increased susceptibility of older participants to input interference. Further experiments revealed that this input interference is related to the salience of the 2nd stimulus and that it is specific to older participants. Our findings indicate that parallel processing at the input stages of dual-task performance requires cognitive control. An age-related decline in the control of input processes should be considered as one source of age effects in dual-task performance.  相似文献   

8.
It is difficult to perform two tasks at the same time. Such performance limitations are exemplified by the psychological refractory period (PRP): when participants make distinct motor responses to two stimuli presented in rapid succession, the response to the second stimulus is increasingly slowed as the time interval between the two stimuli is decreased. This impairment is thought to reflect a central limitation in selecting the appropriate response to each stimulus, but not in perceptually encoding the stimuli. In the present study, it was sought to determine which brain regions are specifically involved in response selection under dual-task conditions by contrasting fMRI brain activity measured from a response selection manipulation that increased dual-task costs, with brain activity measured from an equally demanding manipulation that affected perceptual visibility. While a number of parieto-frontal areas involved in response selection were activated by both dual-task manipulations, the dorsal pre-motor cortex, and to a lesser extent the inferior frontal cortex, were specifically engaged by the response selection manipulation. These results suggest that the pre-motor cortex is an important neural locus of response selection limitation under dual-task situations.  相似文献   

9.
Some studies have suggested that dual-task interference is greatly reduced when tasks requiring very different types of responses (e.g., manual and vocal) are combined. However, in those studies, the order of stimuli varied unpredictably. In Experiments 1 and 2, variable stimulus order greatly inflated interference between two manual tasks, whereas interference between a manual and a vocal task was only slightly exacerbated. However, central interference (the psychological refractory period) persisted even with the manual/vocal combination. Selection of 2 manual responses with unknown stimulus order may require a special strategy to preclude intertask intrusion errors. Experiment 3 demonstrated that such errors could be provoked with speed stress. Together, these results reconcile response modality effects with the response selection bottleneck model for dual-task interference (once it is suitably amended).  相似文献   

10.
The present study was designed to investigate the mechanism associated with dual-task interference in a psychological refractory period (PRP) paradigm. We used a simple reaction time paradigm consisting of a vocal response (R1) and key-lift task (R2) with a stimulus onset asynchrony (SOA) between 100 ms and 1500 ms. On selected trials we implemented a startling acoustic stimulus concurrent with the second stimulus to determine if we could involuntarily trigger the second response. Our results indicated that the PRP delay in the second response was present for both control and startle trials at short SOAs, suggesting the second response was not prepared in advance. These results support a response preparation bottleneck and can be explained via a neural activation model of preparation. In addition, we found that the reflexive startle activation was reduced in the dual-task condition for all SOAs, a result we attribute to prepulse inhibition associated with dual-task processing.  相似文献   

11.
The present study assessed three hypotheses of how practice reduces dual-task interference: Practice teaches participants to efficiently integrate performance of a task pair; practice promotes automatization of individual tasks, allowing the central bottleneck to be bypassed; practice leaves the bottleneck intact but shorter in duration. These hypotheses were tested in two transfer-of-training experiments. Participants received one of three training types (Task 1 only, or Task 2 only, or dual-task), followed by dual-task test sessions. Practice effects in Experiment 1 (Task 1: auditory-vocal; Task 2: visual-manual) were fully explained by the intact bottleneck hypothesis, without task integration or automatization. This hypothesis also accounted well for the majority of participants when the task order was reversed (Experiment 2). In this case, however, there were multiple indicators that several participants had succeeded in eliminating the bottleneck by automatizing one or both tasks. Neither experiment provided any evidence that practice promotes efficient task integration.  相似文献   

12.
E. H. Schumacher, T. L. Seymour, J. M. Glass, D. E. Kieras, and D. E. Meyer (2001) reported that dual-task costs are minimal when participants are practiced and give the 2 tasks equal emphasis. The present research examined whether such findings are compatible with the operation of an efficient response selection bottleneck. Participants trained until they were able to perform both tasks simultaneously without interference. Novel stimulus pairs produced no reaction time costs, arguing against the development of compound stimulus-response associations (Experiment 1). Manipulating the relative onsets (Experiments 2 and 4) and durations (Experiments 3 and 4) of response selection processes did not lead to dual-task costs. The results indicate that the 2 tasks did not share a bottleneck after practice.  相似文献   

13.
The author examined whether the act of control of stopping is subject to the psychological refractory period (PRP) and whether stopping causes a PRP for the processing of subsequent stimuli. The task was to execute or to stop a rapid finger tapping. PRP interference was predicted for double-stimulation trials, in which 2 signals to tap or stop were presented in rapid succession. The experiments showed that stopping ongoing action is subject to and produces PRP interference similar to starting. Responses to signals to continue an ongoing action do not produce PRP interference. The results suggest that selection or initiation of new responses, but not mere response choice, constituted the processing bottleneck that caused the PRP in the present task. Further results indicate that the inhibition of not-yet-executed actions, in contrast to action termination, does not suffer PRP interference and that response inhibitions and terminations should be distinguished. ((c) 2003 APA, all rights reserved)  相似文献   

14.
The purpose of this paper was to provide insight into the nature of response selection by reviewing the literature on stimulus-response compatibility (SRC) effects and the psychological refractory period (PRP) effect individually and jointly. The empirical findings and theoretical explanations of SRC effects that have been studied within a single-task context suggest that there are two response-selection routes—automatic activation and intentional translation. In contrast, all major PRP models reviewed in this paper have treated response selection as a single processing stage. In particular, the response-selection bottleneck (RSB) model assumes that the processing of Task 1 and Task 2 comprises two separate streams and that the PRP effect is due to a bottleneck located at response selection. Yet, considerable evidence from studies of SRC in the PRP paradigm shows that the processing of the two tasks is more interactive than is suggested by the RSB model and by most other models of the PRP effect. The major implication drawn from the studies of SRC effects in the PRP context is that response activation is a distinct process from final response selection. Response activation is based on both long-term and short-term task-defined S-R associations and occurs automatically and in parallel for the two tasks. The final response selection is an intentional act required even for highly compatible and practiced tasks and is restricted to processing one task at a time. Investigations of SRC effects and responseselection variables in dual-task contexts should be conducted more systematically because they provide significant insight into the nature of response-selection mechanisms.  相似文献   

15.
Parallel response selection in dual-task situations   总被引:2,自引:0,他引:2  
Semantic priming and response priming were studied in a dual-task procedure. In two experiments, reaction times to the first and second stimuli were faster when the finger required for the Task 1 response was the same as the finger required for the Task 2 response. Such priming suggests that Task 2 response information was generated prior to the completion of Task 1 response selection. These data pose a potential challenge to the response-selection bottleneck (RSB) theory of dual-task performance, since they may indicate a violation of the discrete-stage processing assumption on which the underlying locus-of-slack logic depends. Accommodating these data while preserving the essential bottleneck character of RSB theory may be possible but may also alter the very nature of the bottleneck itself.  相似文献   

16.
Both spatial and temporal selection require focused attention. The authors examine how temporal attention affects spatial selection. In a dual-task rapid serial visual presentation paradigm, temporal selection of a target (T1) impairs processing of a second target (T2) that follows T1 within 500 ms. This process is the attentional blink (AB). To test the effects of withdrawing temporal attention, the authors measured concurrent distractor interference on T2 when the distractors were presented during and outside of the AB. Perceptual interference was manipulated by the similarity in color between T2 and concurrent distractors, and response interference was manipulated by the flanker congruency task. Results showed that perceptual interference was larger during the AB. Response interference also increased during the AB, but only when perceptual interference was high. The authors conclude that temporal selection and spatial selection rely on a common attentional process.  相似文献   

17.
Three psychological refractory period (PRP) experiments were conducted to assess the effect of central arrival times at the bottleneck on task order scheduling. In Experiment 1, a visual first task (plus-minus symbol discrimination) was combined with an auditory second task (left-right tone judgement) in a standard PRP paradigm with constant task order. In Experiment 2, the order of the tasks varied unpredictably. In Experiment 3, visual-auditory dual-task trials were randomly mixed with single-task trials. To dissociate central arrival times from stimulus detection times, the perceptual stage of the visual task was extended using stimulus degradation. Most importantly, no evidence for a first-come, first-served principle at the central bottleneck was found with the employed paradigms. Instead, the results indicated that preparation (Experiment 1) and the detection times of the stimuli (Experiments 2 and 3) were the main determinants of central processing order in the present study. In the light of previous research, the results indicate that central processing order can be influenced by various factors. The interplay between these factors seems to depend highly on the conditions and requirements of the employed experimental paradigm.  相似文献   

18.
The present experiment examined the effects of input/output modality pairings on dual-task performance using the psychological refractory period (PRP) procedure. Four groups of participants performed two tasks composed of the same sets of inputs (visual and auditory) and the same sets of outputs (manual and vocal), but with different input/output modality pairings. Whereas modality pairings had only small effects on single-task reaction times, they had large effects on dual-task reaction times. The modality pairing effect cannot stem from differences in the difficulty of stimulus classification or response execution, because these task demands were the same across groups. The effect also does not appear to result from changes in stimulus-response compatibility. The present findings suggest dual-task interference arises not only from postponement of central operations (due to a central bottleneck), but also from a slowing of central operations whose magnitude is sensitive to the input/output modality pairings.  相似文献   

19.
吴彦文  游旭群 《心理学报》2007,39(5):785-794
采用心理不应期研究范式,三个反应时实验检测了心理旋转任务和其他认知操作任务能否并行加工的问题。在每个实验中要求被试快速、系列地完成对高低音的辨别任务(T1)和不同旋转角度的正反像辨别任务(T2),T1和T2呈现的时间间隔运用变化的SOA。结果发现:(1)T1的反应选择对T2的反应选择产生了很大的影响,在T2上PRP效应显著。心理旋转的操作成绩随着SOA的缩短而降低。(2)在T1上同样存在随着SOA缩短,反应时增加,正确率下降的趋势。T2的反应选择对T1的反应选择同样产生了显著的影响。(3)T2的反应选择对T1的中枢加工产生了相应的影响,表明当T1的反应选择占据中枢瓶颈时,心理旋转任务和其他认知操作任务在中枢瓶颈中并行得到了有效的加工  相似文献   

20.
Visual attention and response selection are limited in capacity. Here, we investigated whether visual attention requires the same bottleneck mechanism as response selection in a dual-task of the psychological refractory period (PRP) paradigm. The dual-task consisted of an auditory two-choice discrimination Task 1 and a conjunction search Task 2, which were presented at variable temporal intervals (stimulus onset asynchrony, SOA). In conjunction search, visual attention is required to select items and to bind their features resulting in a serial search process around the items in the search display (i.e., set size). We measured the reaction time of the visual search task (RT2) and the N2pc, an event-related potential (ERP), which reflects lateralized visual attention processes. If the response selection processes in Task 1 influence the visual attention processes in Task 2, N2pc latency and amplitude would be delayed and attenuated at short SOA compared to long SOA. The results, however, showed that latency and amplitude were independent of SOA, indicating that visual attention was concurrently deployed to response selection. Moreover, the RT2 analysis revealed an underadditive interaction of SOA and set size. We concluded that visual attention does not require the same bottleneck mechanism as response selection in dual-tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号