首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Induced motion (IM) was measured before and after a 10-min adaptation period during which subjects viewed the IM display without judging IM magnitude. The inducing stimulus was a rectangle, which contains both horizontal and vertical reference detail. The magnitude of IM was significantly lower following the adaptation period. This result is inconsistent with the hypothesis that adaptation of IM represents an instance of perceptual learning wherein the contribution of relative motion to motion perception is reduced. In a separate study, similar results were obtained when the inducing stimulus was a single vertical bar presented either to the left or to the right of the fixation stimulus. In addition, adaptation was obtained when the location of the inducing bar was changed during test measures, demonstrating that this effect is not specific to the retinal locus of the adaptation stimulus.  相似文献   

2.
Observers tend to localize the final position of a suddenly vanished moving target farther along in the direction of the target motion (representational momentum). We report here that such localization errors are mediated by perceived motion rather than by retinal motion. By manipulating the cast shadow of a moving target, we induced illusory motion to a target stimulus while keeping the retinal motion constant. Participants indicated the vanishing point of the target by directing a mouse cursor. The resulting magnitude of localization errors was modulated on the basis of the induced direction of the target. Such systematic localization biases were not obtained in a control condition in which the motion paths of the ball and shadow were switched. Our results suggest that cues to object motion trajectory, such as cast shadows, are used for the localization task, supporting a view that a predictive mechanism is responsible for the production of localization errors.  相似文献   

3.
Crowell JA  Andersen RA 《Perception》2001,30(12):1465-1488
The pattern of motion in the retinal image during self-motion contains information about the person's movement. Pursuit eye movements perturb the pattern of retinal-image motion, complicating the problem of self-motion perception. A question of considerable current interest is the relative importance of retinal and extra-retinal signals in compensating for these effects of pursuit on the retinal image. We addressed this question by examining the effect of prior motion stimuli on self-motion judgments during pursuit. Observers viewed 300 ms random-dot displays simulating forward self-motion during pursuit to the right or to the left; at the end of each display a probe appeared and observers judged whether they would pass left or right of it. The display was preceded by a 300 ms dot pattern that was either stationary or moved in the same direction as, or opposite to, the eye movement. This prior motion stimulus had a large effect on self-motion judgments when the simulated scene was a frontoparallel wall (experiment 1), but not when it was a three-dimensional (3-D) scene (experiment 2). Corresponding simulated-pursuit conditions controlled for purely retinal motion aftereffects, implying that the effect in experiment 1 is mediated by an interaction between retinal and extra-retinal signals. In experiment 3, we examined self-motion judgments with respect to a 3-D scene with mixtures of real and simulated pursuit. When real and simulated pursuits were in opposite directions, performance was determined by the total amount of pursuit-related retinal motion, consistent with an extra-retinal 'trigger' signal that facilitates the action of a retinally based pursuit-compensation mechanism. However, results of experiment 1 without a prior motion stimulus imply that extra-retinal signals are more informative when retinal information is lacking. We conclude that the relative importance of retinal and extra-retinal signals for pursuit compensation varies with the informativeness of the retinal motion pattern, at least for short durations. Our results provide partial explanations for a number of findings in the literature on perception of self-motion and motion in the frontal plane.  相似文献   

4.
Changes in eye position were recorded physiologically while S experienced visually induced autokinesis. Eye movements did not seem to sufficiently explain this phenomenon. Apparent motion was found to be based upon a change in phenomenal rather than retinal location. Special consideration was given to those parameters possibly responsible for paradoxical motion.  相似文献   

5.
Q Zaidi  W L Sachtler 《Perception》1991,20(6):703-714
When a narrow uniform gap was surrounded by a moving grating, the gap appeared as a grating in the opposite phase to that of the surround, moving in the same direction with the same speed. Contrast thresholds for moving test-gratings placed in the region of the uniform gap were found to be elevated after prolonged viewing of this pattern, thus demonstrating the existence of motion adaptation in a retinal region surrounded by, but not covered by, a moving pattern. The amplitude of the moving induced-grating was measured by nulling with a real grating moving in the same direction and with the same speed as the surround. When the speed of the inducing grating was varied, the amplitude of the induced effect did not correlate with the magnitude of the threshold elevation. Therefore, it is unlikely that motion adaptation in the uniform gap was due to induced gratings. In some conditions, the adaptation effect of surrounding gratings was no less than the adaptation effect of gratings covering the test region. This result rules out an explantation involving scattered light, and indicates that motion adaptation occurs at a later stage than that consisting of simple motion mechanisms which confound the contrast and velocity of a moving stimulus.  相似文献   

6.
Motion parallax, the ability to recover depth from retinal motion generated by observer translation, is important for visual depth perception. Recent work indicates that the perception of depth from motion parallax relies on the slow eye movement system. It is well known that ethanol intoxication reduces the gain of this system, and this produces the horizontal gaze nystagmus that law enforcement's field sobriety test is intended to reveal. The current study demonstrates that because of its influence on the slow eye movement system, ethanol intoxication impairs the perception of depth from motion parallax. Thresholds in a motion parallax task were significantly increased by acute ethanol intoxication, whereas thresholds for an identical test relying on binocular disparity were unaffected. Perhaps a failure of motion parallax plays a role in alcohol-related driving accidents; because of the effects of alcohol on eye movements, intoxicated drivers may have inaccurate or inadequate information for judging the relative depth of obstacles from motion parallax.  相似文献   

7.
Three experiments were conducted to isolate the effects of retinal locus and string position in tachistoscopic letter recognition. Retinal locus proved to be an important variable even when its range was restricted to less than a degree from the center of the fovea. Performance was maximal at the center of the fovea, dropping off rapidly to about 1.5 deg from the center. From that distance on, the decline in performance was quite gradual. String position was also an important factor. Retinal locus and string position interacted in such a way that the end positions were less affected by retinal locus than the middle positions. It was also found that processing order, as distinct from report order, was a significant component of the string position effect.  相似文献   

8.
Changes in eye position were recorded while S experienced visually induced motion. Movement of the eye was not found to correlate, in either direction or extent, with this type of apparent motion. Induced movement was explained, therefore, in terms of a change in phenomenal rather than retinal location.  相似文献   

9.
Prins N 《Perception》2008,37(7):1022-1036
It has been suggested that correspondence matching in long-range motion is mediated by a perceptually high-level, 'intelligent' system. This suggestion is based on findings that long-range motion can be perceived between stimuli that could not be detected by lower-level motion mechanisms acting on Fourier motion energy, and that correspondence matching is affected by featural similarities between motion tokens that would be invisible to low-level (Fourier) motion detectors. Here, the effects of spatial-frequency content, color, and binocular disparity on correspondence matching are investigated. It is shown that the effects of featural matches between motion tokens develop only over time and lag behind the effects of the relative proximity between motion tokens in the retinal projection. This suggests that correspondence matching in long-range apparent motion is mediated by a mechanism which acts initially on the retinal coordinates of the motion tokens only, but may be biased to favor matching tokens that are featurally similar through a slower top-down influence by higher-level processes.  相似文献   

10.
The interplay between stereopsis and structure from motion   总被引:1,自引:0,他引:1  
In a series of psychophysical experiments, an adaptation paradigm was employed to study the influence of stereopsis on perception of rotation in an ambiguous kinetic depth (KD) display. Without prior adaptation or stereopsis, a rotating globe undergoes spontaneous reversals in perceived direction of rotation, with successive durations of perceived rotation being random variables. Following 90 sec of viewing a stereoscopic globe undergoing unambiguous rotation, the KD globe appeared to rotate in a direction opposite that experienced during the stereoscopic adaptation period. This adaptation aftereffect was short-lived, and it occurred only when the adaptation and test figures stimulated the same retinal areas, and only when the adaptation and test figures rotated about the same axis. The aftereffect was just as strong when the test and adaptation figures had different shapes, as long as the adaptation figure contained multiple directions of motion imaged at different retinal disparities. Nonstereoscopic adaptation figures had no effect on the perceived direction of rotation of the ambiguous KD figure. These results imply that stereopsis and motion strongly interact in the specification of structure from motion, a result that complements earlier work on this problem.  相似文献   

11.
Colored aftereffects that lasted as long as 6 weeks were produced with moving patterns of parallel black and white stripes or with black and white spirals. During adaptation, the patterns moved periodically in opposite directions, each direction paired with one illuminant, red or green. When the moving patterns were later viewed in white light, S saw the red and green colors, but they were related in the opposite way to the direction of motion. The red and green aftereffects were also produced by other pairs of illuminants, red and white, white and green, reddish-yellow and white, and white and greenish-yellow. The aftereffects did not occur unless, during adaptation, the stripes moved in both directions, each direction paired with a different color. The aftereffect was elicited by stripe motion over the retina—it was seen when the eye swept over a pattern of stationary stripes. The aftereffect desaturated when the retinal orientation of the stripes was changed from the adaptation orientation. Saturation was increased by longer exposure and slower speed during adaptation and by faster speed and a more rapid rate of altemation during the test. The luminance of the adaptation light seemed to have little effect. The aftereffect did not transfer from one eye to the other, and it did not change retinal locus, as was shown when clear images of a colored square that lasted several days were produced with a spiral. S ftxated the spiral’s center. The spiral rotated altemately in opposite directions. A red square with a green surround was projected on the center of the spiral when it rotated in one direction; a green square with a red surround was used when it rotated in the other direction. Following 50 min of adaptation, colored images of the squares were seen when the center of the spiral was ftxated and the direction of  相似文献   

12.
W C Gogel  T J Sharkey 《Perception》1989,18(3):303-320
Attention was measured by means of its effect upon induced motion. Perceived horizontal motion was induced in a vertically moving test spot by the physical horizontal motion of inducing objects. All stimuli were in a frontoparallel plane. The induced motion vectored with the physical motion to produce a clockwise or counterclockwise tilt in the apparent path of motion of the test spot. Either a single inducing object or two inducing objects moving in opposite directions were used. Twelve observers were instructed to attend to or to ignore the single inducing object while fixating the test object and, when the two opposing inducing objects were present, to attend to one inducing object while ignoring the other. Tracking of the test spot was visually monitored. The tilt of the path of apparent motion of the test spot was measured by tactile adjustment of a comparison rod. It was found that the measured tilt was substantially larger when the single inducing object was attended rather than ignored. For the two inducing objects, attending to one while ignoring the other clearly increased the effectiveness of the attended inducing object. The results are analyzed in terms of the distinction between voluntary and involuntary attention. The advantages of measuring attention by its effect on induced motion as compared with the use of a precueing procedure, and a hypothesis regarding the role of attention in modifying perceived spatial characteristics are discussed.  相似文献   

13.
Mitsudo H  Ono H 《Perception》2007,36(1):125-134
Two psychophysical experiments were conducted to investigate the mechanism that generates stable depth structure from retinal motion combined with extraretinal signals from pursuit eye movements. Stimuli consisted of random dots that moved horizontally in one direction (ie stimuli had common motion on the retina), but at different speeds between adjacent rows. The stimuli were presented with different speeds of pursuit eye movements whose direction was opposite to that of the common retinal motion. Experiment 1 showed that the rows moving faster on the retina appeared closer when viewed without eye movements; however, they appeared farther when pursuit speed exceeded the speed of common retinal motion. The 'transition' speed of the pursuit eye movement was slightly, but consistently, larger than the speed of common retinal motion. Experiment 2 showed that parallax thresholds for perceiving relative motion between adjacent rows were minimum at the transition speed found in experiment 1. These results suggest that the visual system calculates head-centric velocity, by adding retinal velocity and pursuit velocity, to obtain a stable depth structure.  相似文献   

14.
In everyday life, the optic flow associated with the performance of complex actions, like walking through a field of obstacles and catching a ball, entails retinal flow with motion energy (first-order motion). We report the results of four complex action tasks performed in virtual environments without any retinal motion energy. Specifically, we used dynamic random-dot stereograms with single-frame lifetimes (cyclopean stimuli) such that in neither eye was there retinal motion energy or other monocular information about the actions being performed. Performance on the four tasks with the cyclopean stimuli was comparable to performance with luminance stimuli, which do provide retinal optic flow. The near equivalence of the two types of stimuli indicates that if optic flow is involved in the control of action, it is not tied to first-order retinal motion.  相似文献   

15.
The effects of static and kinetic information for depth on judgments of the relative size of objects placed at different distances was studied in 3- and 7-yr-old children and adults. Subjects viewed either a pair of objects placed on the floor of a textured alley or a projected slide of the identical scene. The presence of motion parallax information for depth was also manipulated. All subjects showed a clear sensitivity to static pictorial depth information in judging objects placed so they projected equal retinal areas. When the retinal size of objects was very different, however, children tended to respond to retinal rather than physical size. Motion parallax information increased responsiveness to depth when a 3-dimensional scene was being viewed, but decreased responsiveness with 2-dimensional projections. The decrease was greater in children than adults.  相似文献   

16.
Freeman TC  Sumnall JH 《Perception》2002,31(5):603-615
Abstract. Observers can recover motion with respect to the head during an eye movement by comparing signals encoding retinal motion and the velocity of pursuit. Evidently there is a mismatch between these signals because perceived head-centred motion is not always veridical. One example is the Filehne illusion, in which a stationary object appears to move in the opposite direction to pursuit. Like the motion aftereffect, the phenomenal experience of the Filehne illusion is one in which the stimulus moves but does not seem to go anywhere. This raises problems when measuring the illusion by motion nulling because the more traditional technique confounds perceived motion with changes in perceived position. We devised a new nulling technique using global-motion stimuli that degraded familiar position cues but preserved cues to motion. Stimuli consisted of random-dot patterns comprising signal and noise dots that moved at the same retinal 'base' speed. Noise moved in random directions. In an eye-stationary speed-matching experiment we found noise slowed perceived retinal speed as 'coherence strength' (ie percentage of signal) was reduced. The effect occurred over the two-octave range of base speeds studied and well above direction threshold. When the same stimuli were combined with pursuit, observers were able to null the Filehne illusion by adjusting coherence. A power law relating coherence to retinal base speed fit the data well with a negative exponent. Eye-movement recordings showed that pursuit was quite accurate. We then tested the hypothesis that the stimuli found at the null-points appeared to move at the same retinal speed. Two observers supported the hypothesis, a third partially, and a fourth showed a small linear trend. In addition, the retinal speed found by the traditional Filehne technique was similar to the matches obtained with the global-motion stimuli. The results provide support for the idea that speed is the critical cue in head-centred motion perception.  相似文献   

17.
Illusory self-motion (vection) is thought to be determined by motion in the peripheral visual field, whereas stimulation of more central retinal areas results in object-motion perception. Recent data suggest that vection can be produced by stimulation of the central visual field provided it is configured as a more distant surface. In this study vection strength (tracking speed, onset latency, and the percentage of trials where vection was experienced) and the direction of self-motion produced by displays moving in the central visual field were investigated. Apparent depth, introduced by using kinetic occlusion information, influenced vection strength. Central displays perceived to be in the background elicited stronger vection than identical displays appearing in the foreground. Further, increasing the eccentricity of these displays from the central retina diminished vection strength. If the central and peripheral displays were moved in opposite directions, vection strength was unaffected, and the direction of vection was determined by motion of the central display on almost half of the trials when the centre was far. Near centres produced fewer centre-consistent responses. A complete understanding of linear vection requires that factors such as display size, retinal locus, and apparent depth plane are considered.  相似文献   

18.
The aim of the experiment was to find out whether saccadiceve movements have any effect on perceived visual directions. ihe method was to alter the parameters of the oculomotor system so that the eye movement made in response to a peripheral target was inappropriate to the retinal locus of its image. It was found that this procedure had no effect on the perceived location of the peripheral target; and it was concluded that a specific retinal locus is more or less rigidly associated with a corresponding visual direction, but not with a particular magnitude of ocular rotation.  相似文献   

19.
Targets were displaced to cancel an apparent displacement induced by a step motion of a background or were held stationary while appearing to jump in an induced displacement. Target and background were then extinguished, and the subject pointed to the target’s last position. When the target had appeared to move but did not, background position did not significantly affect pointing; when the target had moved but appeared to remain stationary (displacement canceled by opposite induced displacement), pointing depended upon the target’s egocentric position. A similar result was obtained with sinusoidal motion. In terms of a two visual-systems hypothesis, the motor system uses more veridical spatial information and is less affected by relative changes in two retinal signals than is the cognitive system.  相似文献   

20.
A Mack  J Hill  S Kahn 《Perception》1989,18(5):649-655
Two experiments are described in which it was investigated whether the adaptation on which motion aftereffects (MAEs) are based is a response to retinal image motion alone or to the motion signal derived from the process which combines the image motion signal with information about eye movement (corollary discharge). In both experiments observers either fixated a stationary point or tracked a vertically moving point while a pattern (in experiment 1, a grating; in experiment 2, a random-dot pattern) drifted horizontally across the field. In the tracking condition the adapting retinal motion was oblique. In the fixation condition it was horizontal. In every case in both conditions the MAE was horizontal, in the direction opposite to that of pattern motion. These results are consistent with the hypothesis that the adaptation is a response to the motion signal derived from the comparison of eye and image motion rather than to retinal motion per se. An alternative explanation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号