首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transfer of the median plane slant aftereffect was assessed across changes in the type of depth information for the slant of the display. In addition, the effectiveness of monocularpictorial and binocular information in inducing the aftereffect was measured. Binocular information produced a larger aftereffect than did monocular-pictorial information, and adaptation created with one type of depth information induced an aftereffect assessed with presentation of the other type of depth information. The results suggest that the slant aftereffect is not entirely specific to type of depth information presented. The induction of the aftereffect involves a process more general than the sensory mechanisms responsible for adaptation to twodimensional tilt or adaptation to a texture gradient.  相似文献   

2.
Prolonged viewing of bright vertical (horizontal) gratings alternating with dim horizontal (vertical) gratings generates negative brightness aftereffects that are contingent on the orientation of orthogonal test gratings. The effect is measured by a brightness cancellation technique, similar to the color cancellation technique used in measuring McCollough effects. Like the latter, brightness aftereffects appear to persist for long periods. The magnitude of these aftereffects is a positive monotonic function of the luminance difference between the inducing gratings, and it depends on the conditions of induction; monocular induction generates larger aftereffects than binocular induction does. The aftereffect transfers interocularly, although its magnitude in the contralateral eye is substantially attenuated; binocular measurement, following monocular induction, results in even smaller aftereffects. An attempt to understand these findings within the computational model of brightness perception developed by Grossberg and Mingolla (1985a, 1985b) is presented.  相似文献   

3.
Selective adaptations was used to determine the degree of interactions between channels processing relative depth from stereopsis, motion parallax, and texture. Monocular adaptations with motion parallax or binocular stationary adaptation caused test surfaces, viewed either stationary binocularly or monocularly with motion parallax, to appear to slant in the opposite direction compared with the slant initially adapted to. Monocular adaptations on frontoparallel surfaces covered with a pattern of texture gradients caused a subsequently viewed test surface, viewed either monocularly with motion parallax or stationary binocularly, to appear to slant in the opposite direction as the slant indicated by the texture in the adaptation condition. No aftereffect emerged in the monocular stationary test condition. A mechanism of independent channels for relative depth perception is dismissed in favor of a view of an asymmetrical interactive processing of different information sources. The results suggest asymmetrical inhibitory interactions among habituating slant detector units receiving inputs from static disparity, dynamic disparity, and texture gradients.  相似文献   

4.
N J Wade  C M de Weert 《Perception》1986,15(4):419-434
Five experiments are reported in which the aftereffect paradigm was applied to binocular rivalry. In the first three experiments rivalry was between a vertical grating presented to the left eye and a horizontal grating presented to the right eye. In the fourth experiment the rivalry stimuli consisted of a rotating sectored disc presented to the left eye and a static concentric circular pattern presented to the right. In experiment 5 rivalry was between static radiating and circular patterns. The predominance durations were systematically influenced by direct (same eye) and indirect (interocular) adaptation in a manner similar to that seen for spatial aftereffects. Binocular adaptation produced an aftereffect that was significantly smaller than the direct aftereffect, but not significantly different from the indirect one. A model is developed to account for the results; it involves two levels of binocular interaction in addition to monocular channels. It is suggested that the site of spatial aftereffects is the same as that for binocular rivalry, rather than sequentially prior.  相似文献   

5.
Two experiments investigated the effects of differing perceptual organizations of reversible figures on McCollough aftereffects. Experiment 1 used colored checkerboard inducing stimuli and achromatic grating test stimuli. While some subjects tended to organize the checkerboards into rows and/or columns and others to organize them into obliques, these variations did not result in differences in aftereffect direction or magnitude. Experiment 2 induced an aftereffect with colored gratings and tested with checkerboards, gratings, and a reversible concentric octagon pattern. Perceptual organization had no effect on results for checkerboards, but was related to aftereffect strength for the octagon pattern. Indirect evidence suggests that, in the latter case, differences in aftereffect strength may have influenced the perceived organization, rather than vice versa. Finally, regardless of the specific organization perceived, spontaneous viewing of all test stimuli produced stronger aftereffects than were found when subjects reorganized the pattern. This may have resulted from a viewing strategy associated with reorganization, since similarly small aftereffects were found when subjects concentrated their attention on a single pattern element.  相似文献   

6.
Four experiments investigated the relation between the development of binocular vision and infant spatial perception. Experiments 1 and 2 compared monocular and binocular depth perception in 4- and 5-month-old infants. Infants in both age groups reached more consistently for the nearer of two objects under binocular viewing conditions than under monocular viewing conditions. Experiments 3 and 4 investigated whether the superiority of binocular depth perception in 4-month-olds is related to the development of sensitivity to binocular disparity. Under binocular viewing conditions in Experiment 3, infants identified as disparity-sensitive reached more consistently for the nearer object than did infants identified as disparity-insensitive. The two groups' performances did not differ under monocular viewing conditions. These results suggest that, binocularly, the disparity-sensitive infants perceived the objects' distances more accurately than did the disparity-insensitive infants. In Experiment 4, infants were habituated to an object, then presented with the same object and a novel object that differed only in size. Disparity-sensitive infants showed size constancy by recovering from habituation when viewing the novel object. Disparity-insensitive infants did not show clear evidence of size constancy. These findings suggest that the development of sensitivity to binocular disparity is accompanied by a substantial increase in the accuracy of infant spatial perception.  相似文献   

7.
Some comparative experiments on the dichoptic induction of the movement aftereffect (MAE) contingent on color and the MAE contingent on orientation are reported. Colorcontingent movement aftereffects could be evoked only when the eye which had viewed color during adaptation also viewed color during test sessions. When the apparent color of the test field was changed by binocular color rivalry, contingent movement aftereffects (CMAEs) appropriate to the suppressed color were reported. After dichoptic induction of the orientation-contingent MAE, aftereffects could be obtained whether the eliciting gratings and stationary test fields were presented together to either eye alone or were dichoptically viewed.  相似文献   

8.
There is conflicting evidence concerning the characteristics of binocular channels in the human visual system with respect to the existence of a 'pure' binocular channel that responds only to simultaneous stimulation of both eyes. Four experiments were conducted to resolve these discrepancies and to evaluate the evidence for the existence of such an exclusive binocular channel. In the first three studies, tilt aftereffects were measured after monocular adaptation. The relative sizes of the direct, interocularly transferred, and binocular aftereffects were not influenced by the configuration of the adapting pattern (experiment 1), or by the eye used for adaptation (experiment 2). There were also consistent interobserver differences in the relative sizes of the aftereffect seen after monocular adaptation (experiment 3). Taken together, these data raise questions about the appropriateness of a monocular adaptation paradigm for evaluating the presence of a pure binocular channel in observers with normal binocular vision. In experiment 4, in which the paradigm of alternating monocular adaptation was used, data were obtained that are consistent with the presence of a pure binocular channel.  相似文献   

9.
The decay of several visual aftereffects may be prolonged by interposing a period of light-free or pattern-free viewing between adaptation and testing. We demonstrate that this storage phenomenon can be observed using the threshold elevation aftereffect that follows inspection of a high-contrast grating pattern. Control experiments comparing thresholds for vertical and horizontal gratings after adaptation to a vertical grating reveal that the stored aftereffect, like its unstored counterpart, is pattern-selective. Storage is equally pronounced with stimuli that are detected by pattern-analyzing or movement-analyzing visual channels. Unlike other aftereffects, the threshold-elevation aftereffect requires that the storage period be light-free; no storage is seen if a blank field is inspected between adaptation and testing. The results are discussed with respect to the nature of visual aftereffects, and possible cognitive or physiological models of storage.  相似文献   

10.
Following prolonged viewing of black and white striped pattems in colored light, red and green aftereffects that lasted as long as 3 days were seen on the patterns, illuminated with white light. Altemate exposures of a vertical pattern of stripes in green light and a horizontal in white light (or a vertical in white light and a horizontal in red light) produced a red aftereffect on the vertical pattern and a green on the horizontal. The red and green aftereffects were also produced with a single vertical pattern. Adaptation colors that were at all greenish produced a red aftereffect on a vertical pattern and a green on a horizontal, whereas colors that were at all reddish produced a green aftereffect on a vertical pattern and a red on a horizontal. Colors near pure blue and pure yellow, which had little red or green content, produced weak aftereffects. The saturation of the aftereffects on the vertical grating varied in proportion to the red or green content of the adaptation color. Vivid red and green aftereffects were frequently obtained with the vertical and horizontal adaptation patterns paired with colors that closely bracketed pure yellow or pure blue. In all cases, the aftereffects gradually desaturated as the head was gradually tilted down to the side; the colors on each test pattern, vertical and horizontal, vanished at 45-deghead tilt and reversed beyond 45 deg.  相似文献   

11.
Alternate monocular and binocular exposure to complementary stimulation can yield opposite but coexisting aftereffects that are contingent on whether the test display is viewed with one eye or two eyes. The motion aftereffect was studied by adapting each eye separately to a contracting spiral and both eyes together to an expanding spiral. The stationary test spiral subsequently appeared to be expanding when viewed monocularly, but to be contracting when it was seen with both eyes open. With respect to the McCollough effect, after monocular exposure to red-vertical and green-horizontal gratings and binocular exposure to red-horizontal and green-vertical gratings, the appearance of the color of the test gratings when viewed with one eye was different from that when viewed with both eyes. Opposite, coexisting aftereffects induced by complementary stimulation can be interpreted as evidence that there are unique binocular aspects to visual function.  相似文献   

12.
Viewing faces of one sex changes the perception of subsequently seen ambiguous faces. Here we investigate if the mechanisms responsible for this sex aftereffect are also activated during mental imagery of faces. Participants categorized the sex of ambiguous faces after either viewing images of male or female actors' faces or imagining these same faces. As in previous studies, the ambiguous images were categorized as female more often after viewing male faces than after viewing female faces. The opposite effect was found for imagined faces, however; the ambiguous images were categorized as female more often after imagining female faces than after imagining male faces. Although our results are inconsistent with findings that imagined faces cause either no aftereffects or similar aftereffects to visually presented faces, our results are consistent with recent evidence that visual and imagined presentation of faces cause opposite adaptation effects on an early electrophysiological response associated with face processing.  相似文献   

13.
Placing a neutral-density filter in front of one eye produces two kinds of distortion in the perceived slant of a binocularly viewed rotating disk: (1) the top or the bottom of a disk rotating in a frontoparallel plane appears displaced toward or away from the observer, depending on the direction of rotation and whether the left or right eye is filtered; and (2) the left or right side of such disk—rotating or stationary—appears closer, depending on whether the left or right eye is filtered. The Pulfrich phenomenon accounts for the first variety of apparent slant, and the Venetian blind effect accounts for the second. Viewing the apparent slant of the rotating disk produces an aftereffect of slant in the third dimension which is greater than the aftereffect of viewing an objective slant of the same direction and magnitude.  相似文献   

14.
An aftereffect of perceived texture density contingent on the color of a surrounding region is reported. In a series of experiments, participants were adapted, with fixation, to stimuli in which the relative density of two achromatic texture regions was perfectly correlated with the color presented in a surrounding region. Following adaptation, the perceived relative density of the two regions was contingent on the color of the surrounding region or of the texture elements themselves. For example, if high density on the left was correlated with a blue surround during adaptation (and high density on the right with a yellow surround), then in order for the left and right textures to appear equal in the assessment phase, denser texture was required on the left in the presence of a blue surround (and denser texture on the right in the context of a yellow surround). Contingent aftereffects were found (1) with black-and-white scatter-dot textures, (2) with luminance-balanced textures, and (3) when the texture elements, rather than the surrounds, were colored during assessment. Effect size was decreased when the elements themselves were colored, but also when spatial subportions of the surround were used for the presentation of color. The effect may be mediated by retinal color spreading (Pöppel, 1986) and appears consistent with a local associative account of contingent aftereffects, such as Barlow’s (1990) model of modifiable inhibition.  相似文献   

15.
This study was designed to explore the limitations of tau (τ) as an explanatory construct for the timing of interceptive action. This was achieved by examining the effects of environmental structure and binocular vision on the timing of the grasp in a simple one-handed catch. In two experiments, subjects were required to catch luminous balls of different diameters (4, 6, 8 and 10 cm) in a completely darkened room. In the first experiment the influence of the presence vs. absence of an environmental background structure (both under monocular viewing) was tested, and in the second experiment the influence of monocular vs. binocular vision was examined. It was found that irrespective of the presence of environmental structure, an effect of ball size occurred in the monocular viewing conditions. That is, in monocular viewing conditions the grasp was initiated and completed earlier for the larger balls as compared to the smaller ones, while in the binocular viewing condition subjects behaved in accordance with a constant time to contact strategy: no effects of ball size were found. It is concluded that under binocular viewing a binocular information source is used, while in the monocular viewing condition a lower order information source like image size or image velocity is probably involved.  相似文献   

16.
The hypothesis that induction of the McCollough effect (spatially selective color aftereffects) entails adaptation of monocularly driven detectors tuned to both spatial and color attributes of the visual stimulus was examined in four experiments. The McCollough effect could not be generated by displaying contour information to one eye and color information to the other eye during inspection, even in the absence of binocular rivalry. Nor was it possible to induce depth-specific color aftereffects following an inspection period during which random-dot stereograms were viewed, with crossed and uncrossed disparity seen in different colored light. Masking and aftereffect in the perception of stereoscopic depth were also nonselective to color; in both cases, perceptual distortion was controlled by stereospatial variables but not by the color relationship between the inspection and test stimuli. The results suggest that binocularly driven spatial detectors in human vision are insensitive to wavelength.  相似文献   

17.
Measures of kinesthetic aftereffects were made for 240 Ss in 15 groups. Each group was tested with a combination of number of 30-sec. inspection periods (5, 10, or 15) and time between inspection periods (0, 10, 30, 60, or 90 sec). The number of inspection periods had a significant effect on size of aftereffect and on residual aftereffect 15 min later. The maximum aftereffect followed the 10 period inspection (5 min inspection). Distribution of inspection periods in time had no significant effect on these measures of aftereffect. In a second experiment, distribution of inspection periods in time had no effect on induced aftereffect or on residual aftereffect 24 h later. There was significant residual aftereffect after 24 h which was significantly related to amount of aftereffect originally induced.  相似文献   

18.
In a series of experiments, we found that in addition to expected reports of color aftereffects on patterns viewed during induction, reliable and predictable reports of color were given by subjects to patterns they did not view during induction. These reports to noninduced patterns were generally to patterns that were orthogonal to the patterns seen during induction. Induction with, for example, a red vertical grating led to appropriate aftereffects (i.e., green) on that vertical pattern and to the complementary aftereffect (i.e., pink) on a horizontal grating. We suggest that such color aftereffects on noninduced patterns are based on a shift in the activity of orientation coding mechanisms as a result of viewing the inducing patterns. We further propose that the results are consistent with the Lie transformation group theory of neuropsychology and that they add to a growing body of research demonstrating the applicability of this theory to the understanding of pattern-contingent color aftereffects.  相似文献   

19.
S J Judge  C M Bradford 《Perception》1988,17(6):783-802
A one-handed ball-catching task was used to study the disturbance of depth judgement induced by telestereoscopic viewing (ie viewing with increased effective interocular separation), the recovery of performance with experience in the telestereoscope, and the errors that subsequently arose when the telestereoscope was removed. The ball's trajectory was variable so that subjects had to control both the position and the timing of the grasp in order to catch the ball. On first wearing the telestereoscope, subjects closed the hand when the ball was approximately twice as far away from the eyes as the hand was. After fewer than twenty trials in the telestereoscope subjects were closing the hand at approximately the correct time and place, although rather more trials were needed for ball-catching performance to recover to normal. When the telestereoscope was removed there was an aftereffect, with subjects making the opposite errors to when they began the task. The existence of an aftereffect shows that the process of adaptation involves reevaluation rather than neglect of the misleading binocular information. Helmholtz's theory that telestereoscopes cause the world to be perceived as a scale model is considered. Initial misreaching is roughly consistent with this theory, but there are insufficient data to test it rigorously. Data from the aftereffect phase are clearly inconsistent with the theory. The results confirm the importance of binocular information in dynamic motor tasks, such as ball catching.  相似文献   

20.
Previous research on visual contingent aftereffects has been concerned with examining the effects of various parameters (e.g., spatial frequency and luminance) on the adaptation to, and decay of, contingent aftereffects. The current study tested the viability of using visual contingent aftereffects in a display context. Using established characteristics of contingent aftereffects, a program of contingent aftereffect adaptation was designed. Studies were conducted to determine if subjects who were adapted to see visual contingent aftereffects invoked by a visual display could achieve more rapid or certain identification of a display under low luminance conditions. The results confirmed (a) that contingent aftereffects can improve performance on a visual discrimination task requiring information from a display and (b) that contingent aftereffects are more enhanced at low levels of illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号