首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two aspects of the amygdaloid complex (corticomedial and basolateral) were examined with reference to serotonergic inhibition of shock-induced aggression. Fighting was significantly depressed by serotonergic stimulation (5-HT, 10 μg bilateral) in the corticomedial amygdala while serotonergic blockade (methysergide, 5 μg bilateral) in this region increased levels of fighting. No consistent effects were obtained with serotonergic manipulation of the basolateral amygdala. Further investigation revealed that the state of serotonergic activity in medial amygdaloid sites was associated with concomitant alterations in the animals' sensitivity to footshock. Results are discussed in relation to a) a general inhibitory role of serotonin in behavioural mechanisms and b) a dopaminergic-serotonergic balance for behavioural arousal involving medial amygdaloid nuclei.  相似文献   

2.
Electrolytic lesions of the basomedial hypothalamus eliminated food-deprivation-induced stabilimeter activity in rats that were prevented from becoming obese. Knife cuts lateral to the basomedial area (separating the medial and lateral hypothalamus) potentiated this activity, as did transections posterior to the basomedial region. Anterior transections (between anterior and medial hypothalamus), however, eliminated the effect. Lesions of the stria terminalis and amygdala likewise abolished deprivation-induced locomotor activity, but elevated ab-lib activity to a level comparable with that after deprivation in intact animals. Animals with combined basomedial-stria terminalis lesions behaved like animals with basomedial lesions. These results suggest that food-deprivation-induced locomotor activity in stabilimeter cages is due to a disinhibition of the basomedial hypothalamus by the amygdala via the stria terminalis.  相似文献   

3.
Intracranial infusions of a local anesthetic (lidocaine, 2%) were made bilaterally (4 microliter over 20 min) through permanently implanted cannulas ending in the lateral septum or adjacent areas. Increases in irritability and reactivity to the experimenter, muricide, and intermale aggression were produced by injections into the lateral septum and the region ventral to it. The increases in reactivity and interanimal aggresion occurred in varying degrees and were independent of one another, but intermale aggression occurred only in animals showing muricide. The most effective site for eliciting the entire spectrum of aggressive behaviors was the region ventral to the anterior septum. The region ventral to the posterior septum (medial preoptic area, anterior hypothalamic area, straia terminalis) was unique in that it tended to produce a high incidence of muricide, with only modest increases in reactivity. The lateral septum was moderately effective in producing the entire range of aggressive behaviors. No changes in behavior were noted with infusions into the medial septum or th medial forebrain bundle/lateral preoptic area ventrolateral to the septum. It is suggested that the hyperreactivity and irritability may be relat to hyperdefensiveness and that muricide and intermale aggression are points on a continuum of interanimal aggressiveness.  相似文献   

4.
Three conditioned aversive responses were used to infer the existence of an unobservable central state of "conditioned fear," and the roles of certain amygdala subregions in producing these responses were investigated. Rats received tone-shock pairings in one compartment of a shuttle box and no tones or shocks in the other, distinctive, compartment. They were then trained to find food in one arm of a Y-maze. After the final training trial they were exposed to different sets of stimuli in the shuttle box with no shock. Twenty-four hours later rats that had received immediate posttraining exposure to the conditioned stimuli (in the shock-paired compartment) made significantly more correct responses on the Y-maze than rats that had been exposed to the neutral stimuli (in the no-shock compartment) or rats that had received delayed posttraining exposure to the conditioned stimuli. This constitutes a demonstration of posttraining memory modulation by conditioned aversive stimuli. Freezing increased during posttraining exposure to the conditioned stimuli compared to the neutral stimuli. When subsequently allowed to move freely between the two compartments, the rats in all groups also showed significant conditioned avoidance of the compartment containing the conditioned stimuli. In a second experiment the effects of lesions confined to specific parts of the amygdala on the three conditioned responses (memory modulation, freezing, avoidance) were tested. Lesions of the central nucleus impaired all three conditioned responses; lesions of the medial nucleus impaired conditioned modulation and avoidance. These lesions had no effect on freezing during the training trials. Lesions of the lateral and basolateral nuclei attenuated freezing during both training and testing. The findings suggest that the central and medial nuclei of the amygdala may be important parts of neural circuits mediating conditioned responses that constitute conditioned aversive states, but that conditioned freezing may be mediated independently.  相似文献   

5.
创伤后应激障碍的动物模型及其神经生物学机制   总被引:4,自引:0,他引:4  
创伤后应激障碍是指个体由于经历对生命具有威胁的事件或严重的创伤,导致症状长期持续的精神障碍。研究创伤后应激障碍的主要动物模型为条件性恐惧和应激敏感化模型。研究表明,创伤后应激障碍中长时程留存的恐惧性记忆、高唤醒等症状与大脑杏仁核、内侧前额叶皮层和海马三个脑区及下丘脑-垂体-肾上腺轴负反馈功能增强密切相关。其中杏仁核活动增强是条件性恐惧记忆获得、保持和表达的关键神经基础。内侧前额叶皮层对杏仁核的去抑制及海马向杏仁核传递的威胁性环境信息,促进创伤后应激障碍症状的出现。在经历创伤应激后糖皮质激素受体的上调及多巴胺活动的增强是创伤后应激障碍产生的主要神经基础。对创伤后应激障碍的药物治疗研究证明多巴胺D2受体在改善患者症状中的作用比较重要,但仍需作更深入的探索  相似文献   

6.
The possible role of amygdaloid catecholamines in the control of shock-induced aggression and pain sensitivity in the rat was investigated. Bilateral microinjections of chlorpromazine into the corticomedial amygdala resulted in decreased fighting and decreased sensitivity to the shock stimulus. Further analysis of this effect, using specific adrenergic antagonists, revealed that neither a- nor Padrenergic systems appeared to be responsible for the behavioral effect of chlorpromazine. Injections of haloperidol into the same region, however, yielded a reduction similar to that produced by chlorpromazine, while dopamine injections resulted in significant elevations in both fighting and pain sensitivity. No effect on any of these behavioral measures was obtained following injection of any of the agents into the basolateral amygdala. These results suggest that the observed effect of catecholamine injections in the corticomedial amygdala is related to changes in pain sensitivity mediated by dopamine.  相似文献   

7.
The effects of the ACTH (4-10) analogue, ACTH (4-7)-Pro-Gly-Pro, and delta-sleep inducing peptide (DSIP) on the induction of Fos immunoreactivity in the hypothalamic parvocellular paraventricular nucleus (pPVN) and limbic brain regions were studied in Wistar rats with high (resistant) or low (predisposed) resistance to emotional stress, predicted from differences in their open-field behaviour. Fos-immunoreactive (Fos-IR) cells were counted in brain sections automatically with a computer-based image analyser. Under basal conditions, Fos-IR cell numbers were greater in the pPVN in the predisposed rats, but were lower than in the resistant rats in the basolateral amygdala and medial and lateral septum. Intraperitoneal DSIP injection (30 μg/kg) increased basal Fos-IR cell number in the pPVN and lateral septum in resistant rats, with no effects in predisposed rats. ACTH (4-10) analogue (50 μg/kg)increased Fos expression in the pPVN in both resistant and predisposed rats, with essentially no effects in the basolateral amygdala or medial and lateral septum. Emotional stress (60 min restraint and intermittent subcutaneous electrical shocks) increased Fos expression in the pPVN and medial and lateral septum similarly in predisposed and resistant rats, but in the basolateral amygdala in only the predisposed rats. Intraperitoneal DSIP injection reduced the increases in Fos-IR cell number after emotional stress, particularly in predisposed rats. In predisposed rats DSIP decreased the number of Fos-IR cells in the pPVN and the medial and lateral septum, with no change in the basolateral amygdala. In resistant rats, DSIP decreased Fos expression only in the lateral septum. ACTH (4-10) analogue injection inhibited stress-induced Fos expression in the pPVN and the medial septum, but only in predisposed rats. The experiments indicate that DSIP and ACTH (4-10) analogue reduce pPVN and limbic neurone responses to emotional stress in the rats predisposed to emotional stress; the effects on Fos expression may play a role in the biological activities of these peptides.  相似文献   

8.
恐惧是一种基本的情绪, 在人类的生存和适应中发挥着重要作用。先前的研究表明, 杏仁核、背侧前扣带回、脑岛等脑区是条件化恐惧习得的认知神经基础, 杏仁核、海马和腹内侧前额叶等脑区在恐惧消退过程中发挥重要作用。研究发现, 催产素与恐惧习得和恐惧消退过程密切相关。恐惧习得过程中, 催产素影响杏仁核、背侧前扣带回的活动, 影响杏仁核与背侧前扣带回和脑干间的功能连接, 促进或抑制恐惧习得过程; 恐惧消退过程中, 催产素影响了杏仁核和腹内侧前额叶的活动, 并且影响杏仁核与内侧前额叶和海马间的功能连接, 促进或抑制恐惧消退过程。未来研究应从性别差异、神经网络模型、身心发育和病理研究等角度展开, 力图深入理解催产素影响恐惧情绪加工的认知神经机制。  相似文献   

9.
An experimentally produced hyperreactivity facilitates initiation of mouse-killing in rats that did not previously develop any stable inhibition of interspecific aggression. Destruction of the corticomedial amygdala or interruption of the stria terminalis interferes with the development of such an inhibition on the basis of “social” influences, whereas lateral amygdaloid lesions have no effect on mouse-killing.  相似文献   

10.
Neural activity associated with self-referential processing of emotional stimuli was investigated using whole brain functional magnetic resonance imaging (fMRI). Fifteen healthy subjects underwent fMRI scanning while making judgments about positive and negative trait words in four conditions (self-reference, other-reference, semantic processing, and letter processing). Significant activity was observed in the right ventral anterior cingulate gyrus and the right amygdala in the negative-word/self-reference condition, and in the left amygdala in the positive-word/self-reference condition. Compared with the semantic-processing condition, the self-reference conditions showed significantly more activity in the medial prefrontal and temporal gyri, posterior cingulate gyrus, and precuneus. These results suggest that the medial prefrontal gyrus, posterior cingulate gyrus, and precuneus are associated with a self-referential processing, and the ventral anterior cingulate gyrus is involved in self-referential processing of negative emotional stimuli. The results also suggest that the amygdala is associated with self-referential processing of both positive and negative emotional stimuli.  相似文献   

11.
Bilateral electrolytic lesions in the periamygdaloid piriform cortex of female albino rats produced marked disruptive effects on the acquisition of active avoidance responses in a 1-way as well as a 2-way test situation, significantly impaired passive avoidance behavior, and inhibited feeding in a novel environment. Lesions in each of the 6 major subdivisions of the amygdala (cortical, medial, central, intercalated, lateral, and basolateral nuclei) consistently produced facilitatory effects on active avoidance behavior in 1-way as 2-way situations. Passive avoidance behavior was impaired in animals with lesions in the central, intercalated, and basolateral nuclei. Damage to the anterior amygdaloid area or the the nuclei of the lateral olfactory tract did not reliably affect active or passive avoidance behavior.  相似文献   

12.
Pre-test exposure to training-related cues is known to improve subsequent retention performance. To identify brain regions engaged in processes promoted by retrieval cues, a brain imaging approach using the [6-14C]glucose autoradiographic technique was used. Sprague-Dawley rats trained in a brightness discrimination avoidance task were submitted to different cueing conditions after a 1- or a 21-day training-to-test interval (TTI). Animals were either non-cued, cued with a box, or cued with a box and the light that served as a discriminative stimulus. Effects of the different cueing conditions on retention performance or on metabolic activity in 58 different brain regions were investigated. Rats cued with the light exhibited a subsequent improvement of their retention performance relative to controls, when tested at the 1- but not 21-days TTI, confirming our previous results. At the 1-day retention interval, a comparison between rats cued with the box and rats cued with the box and the light showed that the light cue significantly increased glucose uptake in a neuronal network composed of the lateral, basal, and central nuclei of the amygdala, the anterior and suprachiasmatic hypothalamic nuclei, the nucleus accumbens, the medial septum, and the insular cortex. In contrast, at the 21-day retention interval, both groups demonstrated similar cerebral metabolic activity. The present results indicate that exposure to a light cue increased metabolic activity in the previously mentioned brain structures only when the light acted as an effective retrieval cue, suggesting an involvement of this network in the processes triggered by a retrieval cue. Arguments are provided supporting the notion that the amygdala may play a key role in these processes. Whether the amygdala is a part of a neural network involved in retrieval processes or in neuromodulating systems that favour the efficacy of retrieval processes is also discussed.  相似文献   

13.
Bilateral medial preoptic lesions in rats dramatically lowered the rejection threshold for quinine-adulterated water but not for food in 24-hr forced-choice tests. The detection threshold for quinine in a two-bottle choice test, however, was unaffected by the medial preoptic lesion. Bilateral septal and lateral preoptic lesions had no effect on any quinine-adulteration tests. The enhanced rejection of quinine-adulterated water in a forced-choice test by medial-preoptic-damaged rats was also observed after 24-hr of water deprivation. Furthermore, the plasma osmolality of medial preoptic rats was significantly elevated above controls after 24-hr of water deprivation. These findings were interpreted as suggesting that a medial preoptic lesion produces a deficit in thirst-motivated behavior.  相似文献   

14.
Intracranial sefl-stimulation (ICSS) was studied in rats with chronically implanted lateral hypothalamic, substantia nigra, or medial frontal cortex bipolar electrodes. A comparison of the effects of d- and l-amphetamine on ICSS response rate indicated that the d isomer had a greater facilitatory effect than the l isomer at lateral hypothalamic and substantia nigra electrode sites but that neither isomer significantly affected medial frontal cortex ICSS. d-Amphetamine resulted in a dose-related increase in motor activity, but the same doses of the l isomer resulted in decreased motor activity. Only lateral hypothalamic ICSS response rates increased significantly in response to food deprivation. Increases in current intensity above the level used for amphetamine and food-deprivation testing facilitated lateral hypothalamic and substantia nigra ICSS response rates but did not significantly affect medial frontal cortex response rates. The responsiveness of ICSS at each electrode site appeared to be correlated with the fiber- and cell-body densities of catecholaminergic systems in the brain.  相似文献   

15.
The present series of experiments examined whether the medial preoptic area (MPOA) is involved in the onset of maternal behavior in the rat. Previously, the MPOA had been shown to be important in the maintenance of maternal behavior in the lactating rat. The first experiment investigated whether estradiol benzoate (EB) acts on the MPOA to facilitate the onset of maternal behavior in the 16-day pregnant, hysterectomized, and ovariectomized female rat. Such rats when given EB implants in the MPOA had significantly shorter latencies for the onset of maternal behavior than had females implanted with cholesterol in the MPOA or with EB in the ventromedial hypothalamus, in mammillary bodies, or under the skin. A second experiment showed that estrogen-induced prolactin release was not involved in this facilitation. A third experiment indicated that MPOA lesions disrupt the onset of maternal behavior that is induced by pup stimulation in virgin females. It was concluded that the MPOA is involved not only in the maintenance of maternal behavior but in the hormonally mediated onset of maternal behavior and the onset of maternal behavior induced in virgin females by pup stimulation.  相似文献   

16.
Intrahypothalamic effects of gonadotropins (luteinizing hormone and follicle-stimulating hormone), thyrotropin-releasing hormone (TRH), and luteinizing-hormone-releasing hormone (LRH) on lordotic behavior were evaluated in ovariectomized (OVX) rats maintained at different receptivity levels. Under conditions of low receptivity in which LRH has been shown to enchance mating behavior, medial preoptic area (MPOA) infusions of luteinizing hormone (LH) caused significant depressions in the lordotic response, whereas LH infusions into the arcuate ventromedial area (ARC-VM) had no sigificant effect. Follicle-stimulating hormone (FSH) infusions into either area did not alter the behavioral response. In the second experiment, in which OVX rats were primed with higher doses of estrone to maintain high ptrinfusion receptivity, MPOA or ARC-VM infusions of either LH or TRH were shown to depress lordotic behavior significantly, whereas neither LRH nor FSH was observed to inhibit the behavioral response. A third experiment evaluated the effects of LH, FSH, and TRH on LRH-facilitated mating behavior. Infusions of LRH into either the MPOA or the ARC-VM significantly enhanced mating behavior, whereas the addition of either TRH or LH to the LRH infusates abolished this response. The addition of FSH to LRH infusates neither enhanced nor depressed the behavioral response to MPOA or ARC-VM infusions of LRH. The antagonistic effects of LH and TRH on LRH-facilitated mating behavior were correlated with previous observations of antagonistic effects on hypothalamic unit activity and monoamine metabolism. The antagonistic interrelation between LRH and LH may represent a mechanism for the activation and coordination of sexual receptivity with ovulation.  相似文献   

17.
The awareness of thirst: proposed neural correlates   总被引:2,自引:0,他引:2  
The neural and endocrine bases of the generation of thirst are reviewed. Based on this review, a hierarchical system of neural structures that regulate water conservation and acquisition is proposed. The system includes primary sensory-receptive areas; secondary sensory structures (circumventricular organs), which detect levels of hormones, including angiotensin II and vasopressin, which are involved in generating thirst; preoptic and hypothalamic structures; and an area within the ventrolateral quadrant of the periaqueductal gray matter. Hodological and other data are used to determine the hierarchical organization of the system. Based on studies of the effects of lesions to various structures within the hierarchy of the system, it is proposed that the awareness of thirst in rodents is either entirely or predominantly due to neuronal activities in a subsection of the ventrolateral periaqueductal gray matter. It is also hypothesized that the awareness of thirst in primates is due to neuronal activities in both the ventrolateral periaqueductal gray and in a region within the medial prefrontal and anterior cingulate cortex.  相似文献   

18.
The amygdala, the dorsal periaqueductal gray (dPAG), and the medial hypothalamus have long been recognized to be a neural system responsible for the generation and elaboration of unconditioned fear in the brain. It is also well known that this neural substrate is under a tonic inhibitory control exerted by GABA mechanisms. However, whereas there is a growing body of evidence to suggest that the amygdala and dPAG are also able to integrate conditioned fear, it is still unclear, however, how the distinct hypothalamic nuclei participate in fear conditioning. In this work we aimed to examine the extent to which the gabaergic mechanisms of this brain region are involved in conditioned fear using the fear-potentiated startle (FPS). Muscimol, a GABA-A receptor agonist, and semicarbazide, an inhibitor of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD), were used as an enhancer and inhibitor of the GABA mechanisms, respectively. Muscimol and semicarbazide were injected into the anterior hypothalamus (AHN), the dorsomedial part of the ventromedial nucleus (VMHDM), the dorsomedial (DMH) or the dorsal premammillary (PMD) nuclei of male Wistar rats before test sessions of the fear conditioning paradigm. The injections into the DMH and PMD did not produce any significant effects on FPS. On the other hand, muscimol injections into the AHN and VMHDM caused significant reduction in FPS. These results indicate that injections of muscimol and semicarbazide into the DMH and PMD fail to change the FPS, whereas the enhancement of the GABA transmission in the AHN and VMHDM produces a reduction of the conditioned fear responses. On the other hand, the inhibition of this transmission led to an increase of this conditioned response in the AHN. Thus, whereas DMH and PMD are known to be part of the caudal-most region of the medial hypothalamic defensive system, which integrates unconditioned fear, systems mediating conditioned fear select the AHN and VMHDM nuclei that belong to the rostral-most portion of the hypothalamic defense area. Thus, distinct subsets of neurons in the hypothalamus could mediate different aspects of the defensive responses.  相似文献   

19.
The following studies examined the dose and time dependence, site specificity, and reversibility of chlordiazepoxide (CDP)-induced working memory impairments in adult male Sprague-Dawley rats. The rats were tested in a delayed non-match-to-sample radial-arm maze task in which a 1-h delay was imposed between the first four (predelay) and all subsequent (postdelay) arm choices. Intraperitoneal (ip) injection of 2.5 or 5.0 but not 1.25 mg/kg CDP immediately following the predelay session impaired performance in the task. CDP increased the number of errors and decreased the number of correct choices during the postdelay session. The observed working memory impairments also appeared to be site specific since injection of CDP into the medial septum, but not into the anterior amygdala nuclei, immediately following the predelay session also impaired working memory in a dose-related manner. Furthermore, there was a time window for CDP-induced working memory impairments since intraseptal injection of the drug immediately but not 15 min following the predelay session disrupted memory. This observation suggests that the performance deficits reflect disrupted working memory and not proactive effects on performance or the induction of state-dependent learning. In the final experiment, rats were injected ip with either saline or an amnestic dose of CDP (5.0 mg/kg) following the predelay session and then were immediately infused with 10 nmol flumazenil (RO15-1788), a benzodiazepine receptor antagonist or vehicle, into either the medial septum or anterior nuclei of the amygdala. Intraseptal injection of flumazenil prevented the working memory impairments produced by ip injection of CDP. In contrast, intra-amygdala injection of flumazenil did not attenuate, enhance, or modify the CDP-induced working memory impairment. These observations suggest that CDP disrupts working memory by interacting with benzodiazepine receptors in the medial septum.  相似文献   

20.
A large body of literature implicates the amygdala in Pavlovian fear conditioning. In this study, we examined the contribution of individual amygdaloid nuclei to contextual and auditory fear conditioning in rats. Prior to fear conditioning, rats received a large electrolytic lesion of the amygdala in one hemisphere, and a nucleus-specific neurotoxic lesion in the contralateral hemisphere. Neurotoxic lesions targeted either the lateral nucleus (LA), basolateral and basomedial nuclei (basal nuclei), or central nucleus (CE) of the amygdala. LA and CE lesions attenuated freezing to both contextual and auditory conditional stimuli (CSs). Lesions of the basal nuclei produced deficits in contextual and auditory fear conditioning only when the damage extended into the anterior divisions of the basal nuclei; damage limited to the posterior divisions of the basal nuclei did not significantly impair conditioning to either auditory or contextual CS. These effects were typically not lateralized, although neurotoxic lesions of the posterior divisions of the basal nuclei had greater effects on contextual fear conditioning when the contralateral electrolytic lesion was placed in the right hemisphere. These results indicate that there is significant overlap within the amygdala in the neural pathways mediating fear conditioning to contextual and acoustic CS, and that these forms of learning are not anatomically dissociable at the level of amygdaloid nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号