首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A Bayesian procedure to estimate the three-parameter normal ogive model and a generalization of the procedure to a model with multidimensional ability parameters are presented. The procedure is a generalization of a procedure by Albert (1992) for estimating the two-parameter normal ogive model. The procedure supports analyzing data from multiple populations and incomplete designs. It is shown that restrictions can be imposed on the factor matrix for testing specific hypotheses about the ability structure. The technique is illustrated using simulated and real data. The authors would like to thank Norman Verhelst for his valuable comments and ACT, CITO group and SweSAT for the use of their data.  相似文献   

2.
It is shown that measurement error in predictor variables can be modeled using item response theory (IRT). The predictor variables, that may be defined at any level of an hierarchical regression model, are treated as latent variables. The normal ogive model is used to describe the relation between the latent variables and dichotomous observed variables, which may be responses to tests or questionnaires. It will be shown that the multilevel model with measurement error in the observed predictor variables can be estimated in a Bayesian framework using Gibbs sampling. In this article, handling measurement error via the normal ogive model is compared with alternative approaches using the classical true score model. Examples using real data are given.This paper is part of the dissertation by Fox (2001) that won the 2002 Psychometric Society Dissertation Award.  相似文献   

3.
A Bayesian procedure is developed for the estimation of parameters in the two-parameter logistic item response model. Joint modal estimates of the parameters are obtained and procedures for the specification of prior information are described. Through simulation studies it is shown that Bayesian estimates of the parameters are superior to maximum likelihood estimates in the sense that they are (a) more meaningful since they do not drift out of range, and (b) more accurate in that they result in smaller mean squared differences between estimates and true values.The research reported here was performed pursuant to Grant No. N0014-79-C-0039 with the Office of Naval Research.  相似文献   

4.
A joint Bayesian estimation procedure for the estimation of parameters in the three-parameter logistic model is developed in this paper. Procedures for specifying prior beliefs for the parameters are given. It is shown through simulation studies that the Bayesian procedure (i) ensures that the estimates stay in the parameter space, and (ii) produces better estimates than the joint maximum likelihood procedure as judged by such criteria as mean squared differences between estimates and true values. The research reported here was performed pursuant to Grant No. N0014-79-C-0039 with the Office of Naval Research. A related article by Robert J. Mislevy (1986) appeared when the present paper was in the printing stage.  相似文献   

5.
For testlet response data, traditional item response theory (IRT) models are often not appropriate due to local dependence presented among items within a common testlet. Several testlet‐based IRT models have been developed to model examinees' responses. In this paper, a new two‐parameter normal ogive testlet response theory (2PNOTRT) model for dichotomous items is proposed by introducing testlet discrimination parameters. A Bayesian model parameter estimation approach via a data augmentation scheme is developed. Simulations are conducted to evaluate the performance of the proposed 2PNOTRT model. The results indicated that the estimation of item parameters is satisfactory overall from the viewpoint of convergence. Finally, the proposed 2PNOTRT model is applied to a set of real testlet data.  相似文献   

6.
In this paper it will be shown that a certain class of constrained latent class models may be interpreted as a special case of nonparametric multidimensional item response models. The parameters of this latent class model will be estimated using an application of the Gibbs sampler. It will be illustrated that the Gibbs sampler is an excellent tool if inequality constraints have to be taken into consideration when making inferences. Model fit will be investigated using posterior predictive checks. Checks for manifest monotonicity, the agreement between the observed and expected conditional association structure, marginal local homogeneity, and the number of latent classes will be presented.This paper is supported by grant S40-645 of the Dutch Organization for Scientific Research (NWO).  相似文献   

7.
Most item response theory (IRT) models for dichotomous responses are based on probit or logit link functions which assume a symmetric relationship between the probability of a correct response and the latent traits of individuals taking a test. This assumption restricts the use of those models to the case in which all items behave symmetrically. On the other hand, asymmetric models proposed in the literature impose that all the items in a test behave asymmetrically. This assumption is inappropriate for great majority of tests which are, in general, composed of both symmetric and asymmetric items. Furthermore, a straightforward extension of the existing models in the literature would require a prior selection of the items' symmetry/asymmetry status. This paper proposes a Bayesian IRT model that accounts for symmetric and asymmetric items in a flexible but parsimonious way. That is achieved by assigning a finite mixture prior to the skewness parameter, with one of the mixture components being a point mass at zero. This allows for analyses under both model selection and model averaging approaches. Asymmetric item curves are designed through the centred skew normal distribution, which has a particularly appealing parametrization in terms of parameter interpretation and computational efficiency. An efficient Markov chain Monte Carlo algorithm is proposed to perform Bayesian inference and its performance is investigated in some simulated examples. Finally, the proposed methodology is applied to a data set from a large-scale educational exam in Brazil.  相似文献   

8.
Higher-order latent trait models for cognitive diagnosis   总被引:9,自引:0,他引:9  
Higher-order latent traits are proposed for specifying the joint distribution of binary attributes in models for cognitive diagnosis. This approach results in a parsimonious model for the joint distribution of a high-dimensional attribute vector that is natural in many situations when specific cognitive information is sought but a less informative item response model would be a reasonable alternative. This approach stems from viewing the attributes as the specific knowledge required for examination performance, and modeling these attributes as arising from a broadly-defined latent trait resembling theϑ of item response models. In this way a relatively simple model for the joint distribution of the attributes results, which is based on a plausible model for the relationship between general aptitude and specific knowledge. Markov chain Monte Carlo algorithms for parameter estimation are given for selected response distributions, and simulation results are presented to examine the performance of the algorithm as well as the sensitivity of classification to model misspecification. An analysis of fraction subtraction data is provided as an example. This research was funded by National Institute of Health grant R01 CA81068. We would like to thank William Stout and Sarah Hartz for many useful discussions, three anonymous reviewers for helpful comments and suggestions, and Kikumi Tatsuoka and Curtis Tatsuoka for generously sharing data.  相似文献   

9.
Current modeling of response times on test items has been strongly influenced by the paradigm of experimental reaction-time research in psychology. For instance, some of the models have a parameter structure that was chosen to represent a speed-accuracy tradeoff, while others equate speed directly with response time. Also, several response-time models seem to be unclear as to the level of parametrization they represent. A hierarchical framework for modeling speed and accuracy on test items is presented as an alternative to these models. The framework allows a “plug-and-play approach” with alternative choices of models for the response and response-time distributions as well as the distributions of their parameters. Bayesian treatment of the framework with Markov chain Monte Carlo (MCMC) computation facilitates the approach. Use of the framework is illustrated for the choice of a normal-ogive response model, a lognormal model for the response times, and multivariate normal models for their parameters with Gibbs sampling from the joint posterior distribution. This study received funding from the Law School Admission Council (LSAC). The opinions and conclusions contained in this paper are those of the author and do not necessarily reflect the policy and position of LSAC. The author is indebted to the American Institute of Certified Public Accountants for the data set in the empirical example and to Rinke H. Klein Entink for his computational assistance  相似文献   

10.
A pplications of standard item response theory models assume local independence of items and persons. This paper presents polytomous multilevel testlet models for dual dependence due to item and person clustering in testlet‐based assessments with clustered samples. Simulation and survey data were analysed with a multilevel partial credit testlet model. This model was compared with three alternative models – a testlet partial credit model (PCM), multilevel PCM, and PCM – in terms of model parameter estimation. The results indicated that the deviance information criterion was the fit index that always correctly identified the true multilevel testlet model based on the quantified evidence in model selection, while the Akaike and Bayesian information criteria could not identify the true model. In general, the estimation model and the magnitude of item and person clustering impacted the estimation accuracy of ability parameters, while only the estimation model and the magnitude of item clustering affected the item parameter estimation accuracy. Furthermore, ignoring item clustering effects produced higher total errors in item parameter estimates but did not have much impact on the accuracy of ability parameter estimates, while ignoring person clustering effects yielded higher total errors in ability parameter estimates but did not have much effect on the accuracy of item parameter estimates. When both clustering effects were ignored in the PCM, item and ability parameter estimation accuracy was reduced.  相似文献   

11.
This paper studies three models for cognitive diagnosis, each illustrated with an application to fraction subtraction data. The objective of each of these models is to classify examinees according to their mastery of skills assumed to be required for fraction subtraction. We consider the DINA model, the NIDA model, and a new model that extends the DINA model to allow for multiple strategies of problem solving. For each of these models the joint distribution of the indicators of skill mastery is modeled using a single continuous higher-order latent trait, to explain the dependence in the mastery of distinct skills. This approach stems from viewing the skills as the specific states of knowledge required for exam performance, and viewing these skills as arising from a broadly defined latent trait resembling the θ of item response models. We discuss several techniques for comparing models and assessing goodness of fit. We then implement these methods using the fraction subtraction data with the aim of selecting the best of the three models for this application. We employ Markov chain Monte Carlo algorithms to fit the models, and we present simulation results to examine the performance of these algorithms. The work reported here was performed under the auspices of the External Diagnostic Research Team funded by Educational Testing Service. Views expressed in this paper does not necessarily represent the views of Educational Testing Service.  相似文献   

12.
Many educational and psychological assessments focus on multidimensional latent traits that often have a hierarchical structure to provide both overall-level information and fine-grained diagnostic information. A test will usually have either separate time limits for each subtest or an overall time limit for administrative convenience and test fairness. In order to complete the items within the allocated time, examinees frequently adopt different test-taking behaviours during the test, such as solution behaviour and rapid guessing behaviour. In this paper we propose a new mixture model for responses and response times with a hierarchical ability structure, which incorporates auxiliary information from other subtests and the correlation structure of the abilities to detect rapid guessing behaviour. A Markov chain Monte Carlo method is proposed for model estimation. Simulation studies reveal that all model parameters could be recovered well, and the parameter estimates had smaller absolute bias and mean squared error than the mixture unidimensional item response theory (UIRT) model. Moreover, the true positive rate of detecting rapid guessing behaviour is also higher than when using the mixture UIRT model separately for each subscale, whereas the false detection rate is much lower than the mixture UIRT model. The deviance information criterion and the logarithm of the pseudo-marginal likelihood are employed to evaluate the model fit. Finally, a real data analysis is presented to demonstrate the practical value of the proposed model.  相似文献   

13.
A method of estimating item response theory (IRT) equating coefficients by the common-examinee design with the assumption of the two-parameter logistic model is provided. The method uses the marginal maximum likelihood estimation, in which individual ability parameters in a common-examinee group are numerically integrated out. The abilities of the common examinees are assumed to follow a normal distribution but with an unknown mean and standard deviation on one of the two tests to be equated. The distribution parameters are jointly estimated with the equating coefficients. Further, the asymptotic standard errors of the estimates of the equating coefficients and the parameters for the ability distribution are given. Numerical examples are provided to show the accuracy of the method.  相似文献   

14.
Multilevel structural equation models are increasingly applied in psychological research. With increasing model complexity, estimation becomes computationally demanding, and small sample sizes pose further challenges on estimation methods relying on asymptotic theory. Recent developments of Bayesian estimation techniques may help to overcome the shortcomings of classical estimation techniques. The use of potentially inaccurate prior information may, however, have detrimental effects, especially in small samples. The present Monte Carlo simulation study compares the statistical performance of classical estimation techniques with Bayesian estimation using different prior specifications for a two-level SEM with either continuous or ordinal indicators. Using two software programs (Mplus and Stan), differential effects of between- and within-level sample sizes on estimation accuracy were investigated. Moreover, it was tested to which extent inaccurate priors may have detrimental effects on parameter estimates in categorical indicator models. For continuous indicators, Bayesian estimation did not show performance advantages over ML. For categorical indicators, Bayesian estimation outperformed WLSMV solely in case of strongly informative accurate priors. Weakly informative inaccurate priors did not deteriorate performance of the Bayesian approach, while strong informative inaccurate priors led to severely biased estimates even with large sample sizes. With diffuse priors, Stan yielded better results than Mplus in terms of parameter estimates.  相似文献   

15.
The four-parameter logistic (4PL) item response model, which includes an upper asymptote for the correct response probability, has drawn increasing interest due to its suitability for many practical scenarios. This paper proposes a new Gibbs sampling algorithm for estimation of the multidimensional 4PL model based on an efficient data augmentation scheme (DAGS). With the introduction of three continuous latent variables, the full conditional distributions are tractable, allowing easy implementation of a Gibbs sampler. Simulation studies are conducted to evaluate the proposed method and several popular alternatives. An empirical data set was analysed using the 4PL model to show its improved performance over the three-parameter and two-parameter logistic models. The proposed estimation scheme is easily accessible to practitioners through the open-source IRTlogit package.  相似文献   

16.
Item response theory models posit latent variables to account for regularities in students' performances on test items. Wilson's “Saltus” model extends the ideas of IRT to development that occurs in stages, where expected changes can be discontinuous, show different patterns for different types of items, or even exhibit reversals in probabilities of success on certain tasks. Examples include Piagetian stages of psychological development and Siegler's rule-based learning. This paper derives marginal maximum likelihood (MML) estimation equations for the structural parameters of the Saltus model and suggests a computing approximation based on the EM algorithm. For individual examinees, empirical Bayes probabilities of learning-stage are given, along with proficiency parameter estimates conditional on stage membership. The MML solution is illustrated with simulated data and an example from the domain of mixed number subtraction. The authors' names appear in alphabetical order. We would like to thank Karen Draney for computer programming, Kikumi Tatsuoka for allowing us to use the mixed-number subtraction data, and Eric Bradlow, Chan Dayton, Kikumi Tatsuoka, and four anonymous referees for helpful suggestions. The first author's work was supported by Contract No. N00014-88-K-0304, R&T 4421552, from the Cognitive Sciences Program, Cognitive and Neural Sciences Division, Office of Naval Research, and by the Program Research Planning Council of Educational Testing Service. The second author's work was supported by a National Academy of Education Spencer Fellowship and by a Junior Faculty Research Grant from the Committee on Research, University of California at Berkeley. A copy of the Saltus computer program can be obtained from the second author.  相似文献   

17.
A new multilevel latent state graded response model for longitudinal multitrait–multimethod (MTMM) measurement designs combining structurally different and interchangeable methods is proposed. The model allows researchers to examine construct validity over time and to study the change and stability of constructs and method effects based on ordinal response variables. We show how Bayesian estimation techniques can address a number of important issues that typically arise in longitudinal multilevel MTMM studies and facilitates the estimation of the model presented. Estimation accuracy and the impact of between‐ and within‐level sample sizes as well as different prior specifications on parameter recovery were investigated in a Monte Carlo simulation study. Findings indicate that the parameters of the model presented can be accurately estimated with Bayesian estimation methods in the case of low convergent validity with as few as 250 clusters and more than two observations within each cluster. The model was applied to well‐being data from a longitudinal MTMM study, assessing the change and stability of life satisfaction and subjective happiness in young adults after high‐school graduation. Guidelines for empirical applications are provided and advantages and limitations of a Bayesian approach to estimating longitudinal multilevel MTMM models are discussed.  相似文献   

18.
It has long been part of the item response theory (IRT) folklore that under the usual empirical Bayes unidimensional IRT modeling approach, the posterior distribution of examinee ability given test response is approximately normal for a long test. Under very general and nonrestrictive nonparametric assumptions, we make this claim rigorous for a broad class of latent models.This research was partially supported by Office of Naval Research Cognitive and Neural Sciences Grant N0014-J-90-1940, 442-1548, National Science Foundation Mathematics Grant NSF-DMS-91-01436, and the National Center for Supercomputing Applications. We wish to thank Kumar Joag-dev and Zhiliang Ying for enlightening suggestions concerning the proof of the basic result.The authors wish to thank Kumar Joag-Dev, Brian Junker, Bert Green, Paul Holland, Robert Mislevy, and especially Zhiliang Ying for their useful comments and discussions.  相似文献   

19.
This study proposes a new item parameter linking method for the common-item nonequivalent groups design in item response theory (IRT). Previous studies assumed that examinees are randomly assigned to either test form. However, examinees can frequently select their own test forms and tests often differ according to examinees’ abilities. In such cases, concurrent calibration or multiple group IRT modeling without modeling test form selection behavior can yield severely biased results. We proposed a model wherein test form selection behavior depends on test scores and used a Monte Carlo expectation maximization (MCEM) algorithm. This method provided adequate estimates of testing parameters.  相似文献   

20.
A definition ofessential independence is proposed for sequences of polytomous items. For items satisfying the reasonable assumption that the expected amount of credit awarded increases with examinee ability, we develop a theory ofessential unidimensionality which closely parallels that of Stout. Essentially unidimensional item sequences can be shown to have a unique (up to change-of-scale) dominant underlying trait, which can be consistently estimated by a monotone transformation of the sum of the item scores. In more general polytomous-response latent trait models (with or without ordered responses), anM-estimator based upon maximum likelihood may be shown to be consistent for under essentially unidimensional violations of local independence and a variety of monotonicity/identifiability conditions. A rigorous proof of this fact is given, and the standard error of the estimator is explored. These results suggest that ability estimation methods that rely on the summation form of the log likelihood under local independence should generally be robust under essential independence, but standard errors may vary greatly from what is usually expected, depending on the degree of departure from local independence. An index of departure from local independence is also proposed.This work was supported in part by Office of Naval Research Grant N00014-87-K-0277 and National Science Foundation Grant NSF-DMS-88-02556. The author is grateful to William F. Stout for many helpful comments, and to an anonymous reviewer for raising the questions addressed in section 2. A preliminary version of section 6 appeared in the author's Ph.D. thesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号