首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to Pulvermüller (1999), words are represented in the brain by cell assemblies (Hebb, 1949) distributed over different areas, depending on semantic properties of the word. For example, a word with strong visual associations will be represented by a cell assembly involving neurons in the visual cortex, while a word suggesting action will selectively activate neurons in the motor areas. The present work aims to test the latter hypothesis by means of behavioural measures. Specifically it tests the prediction that there should be a selective influence (in terms either of interference or priming) of performed/observed movements on the performance (reaction times and accuracy) of lexical decision involving words with a strong action association. Similarly, a selective influence of visual images on lexical decision involving words with strong visual associations should be observed. Two experiments were carried out. Results provided partial support for the hypothesis.  相似文献   

2.
The neurobiological organization of meaningful language units, morphemes and words, has been illuminated by recent metabolic and neurophysiological imaging studies. When humans process words from different categories, sets of cortical areas become active differentially. The meaning of a word, more precisely aspects of its reference, may be crucial for determining which set of cortical areas is involved in its processing. Word-related neuron webs with specific cortical distributions might underlie the observed category-specific differences in brain activity. Neuroscientific principles can explain these differential topographies.  相似文献   

3.
Brain activity elicited by visually presented words was investigated using behavioral measures and current source densities calculated from high-resolution EEG recordings. Verbs referring to actions usually performed with different body parts were compared. Behavioral data indicated faster processing of verbs referring to actions performed with the face muscles and articulators (face-related words) compared to verbs referring to movements involving the lower half of the body (leg-related words). Significant topographical differences in brain activity elicited by verb types were found starting approximately 250 ms after word onset. Differences were seen at recording sites located over the motor strip and adjacent frontal cortex. At the vertex, close to the cortical representation of the leg, leg-related verbs (for example, to walk) produced strongest in-going currents, whereas for face-related verbs (for example, to talk) the most in-going activity was seen at more lateral electrodes placed over the left Sylvian fissure, close to the representation of the articulators. Thus, action words caused differential activation along the motor strip, with strongest in-going activity occurring close to the cortical representation of the body parts primarily used for carrying out the actions the verbs refer to. Topographically specific physiological signs of word processing started earlier for face-related words and lasted longer for verbs referring to leg movements. We conclude that verb types can differ in their processing speed and can elicit neurophysiological activity with different cortical topographies. These behavioral and physiological differences can be related to cognitive processes, in particular to lexical semantic access. Our results are consistent with associative theories postulating that words are organized in the brain as distributed cell assemblies whose cortical distributions reflect the words' meanings.  相似文献   

4.
Right-handed participants respond more quickly and more accurately to written words presented in the right visual field (RVF) than in the left visual field (LVF). Previous attempts to identify the neural basis of the RVF advantage have had limited success. Experiment 1 was a behavioral study of lateralized word naming which established that the words later used in Experiment 2 showed a reliable RVF advantage which persisted over multiple repetitions. In Experiment 2, the same words were interleaved with scrambled words and presented in the LVF and RVF to right-handed participants seated in an MEG scanner. Participants read the real words silently and responded "pattern" covertly to the scrambled words. A beamformer analysis created statistical maps of changes in oscillatory power within the brain. Those whole-brain maps revealed activation of the reading network by both LVF and RVF words. Virtual electrode analyses used the same beamforming method to reconstruct the responses to real and scrambled words in three regions of interest in both hemispheres. The middle occipital gyri showed faster and stronger responses to contralateral than to ipsilateral stimuli, with evidence of asymmetric channeling of information into the left hemisphere. The left mid fusiform gyrus at the site of the 'visual word form area' responded more strongly to RVF than to LVF words. Activity in speech-motor cortex was lateralized to the left hemisphere, and stronger to RVF than LVF words, which is interpreted as representing the proximal cause of the RVF advantage for naming written words.  相似文献   

5.
Identifying the information processing constraints that determine whether or not imagery moderates visual field asymmetries is essential for constructing a dynamic model of hemispheric interaction during language processing. In this investigation, we manipulated the global experimental context in which imageable and nonimageable words were presented by contrasting mixed and blocked word lists using a lateralized lexical decision task. Signal detection analyses were employed to assess whether global stimulus context and imageability differentially affect word discriminability (d prime) and response bias (log beta) across visual fields. Both discriminability and response bias varied with imageability and stimulus context, but to a comparable extent across visual fields. This suggests that both hemispheres are sensitive to the global context in which words are presented, and can adjust processing based not only on semantic characteristics of the words themselves, but also on the variability of items in the stimulus environment.  相似文献   

6.
The concept of a motor program has been used to interpret a diverse range of empirical findings related to preparation and initiation of voluntary movement. In the absence of an underlying mechanism, its exploratory power has been limited to that of an analogy with running a stored computer program. We argue that the theory of cortical cell assemblies suggests a possible neural mechanism for motor programming. According to this view, a motor program may be conceptualized as a cell assembly, which is stored in the form of strengthened synaptic connections between cortical pyramidal neurons. These connections determine which combinations of corticospinal neurons are activated when the cell assembly is ignited. The dynamics of cell assembly ignition are considered in relation to the problem of serial order. These considerations lead to a plausible neural mechanism for the programming of movements and movement sequences that is compatible with the effects of precue information and sequence length on reaction times. Anatomical and physiological guidelines for future quantitative models of cortical cell assemblies are suggested. By taking into account the parallel re-entrant loops between the cerebral cortex and basal ganglia, the theory of cortical cell assemblies suggests a mechanism for motor plans that involve longer sequences. The suggested model is compared with other existing neural network models for motor programming.  相似文献   

7.
The concept of a motor program has been used to interpret a diverse range of empirical findings related to preparation and initiation of voluntary movement. In the absence of an underlying mechanism, its explanatory power has been limited to that of an analogy with running a stored computer program. We argue that the theory of cortical cell assemblies suggests a possible neural mechanism for motor programming. According to this view, a motor program may be conceptualized as a cell assembly, which is stored in the form of strengthened synaptic connections between cortical pyramidal neurons. These connections determine which combinations of corticospinal neurons are activated when the cell assembly is ignited. The dynamics of cell assembly ignition are considered in relation to the problem of serial order. These considerations lead to a plausible neural mechanism for the programming of movements and movement sequences that is compatible with the effects of precue information and sequence length on reaction times. Anatomical and physiological guidelines for future quantitative models of cortical cell assemblies are suggested. By taking into account the parallel, re-entrant loops between the cerebral cortex and basal ganglia, the theory of cortical cell assemblies suggests a mechanism for motor plans that involve longer sequences. The suggested model is compared with other existing neural network models for motor programming.  相似文献   

8.
Twenty-three Spanish-English bilinguals were tachistoscopically presented with four-letter common nouns. They viewed 20 word pairs, first in their native language, then in the other, for 40 msec under simultaneous bilateral exposure. This paradigm has previously shown a strong right visual field and therefore left hemisphere superiority for words in a single language. The results show a word identification advantage in the right visual field. This indicates a left hemisphere advantage for processing of both languages, regardless of which was learned first. There are nevertheless wide individual differences in the number of bilinguals showing the expected asymmetry, as compared with monolinguals. There may be a trend, therefore, for less unilaterality of language function in bilinguals, although both languages are seen as being equally lateralized.  相似文献   

9.
Previous studies indicate that the right hemisphere (RH) has a unique role in maintaining activation of metaphoric single word meanings. The present study investigated hemispheric asymmetries in comprehending metaphoric word meanings within a sentence context. Participants were presented with incomplete priming sentences followed by (literally) true, false, or metaphoric lateralized target words and were asked to decide whether each sentence is literally true or false. Results showed that responses to metaphoric sentences were slower and less accurate than to false sentences when target words were presented to the right visual field (RVF)-LH as well as to the left visual field (LVF)-RH. This suggests that the understanding of lexical metaphors within a sentence context involves LH as well as RH processing mechanisms and that the role of each hemisphere in processing nonliteral language is flexible and may depend on the linguistic task at hand.  相似文献   

10.
Neurons of primary sensory cortices are known to have specific responsiveness to elemental features. To express more complex sensory attributes that are embedded in objects or events, the brain must integrate them. This is referred to as feature binding and is reflected in correlated neuronal activity. We investigated how local intracortical circuitry modulates ongoing-spontaneous neuronal activity, which would have a great impact on the processing of subsequent combinatorial input, namely, on the correlating (binding) of relevant features. We simulated a functional, minimal neural network model of primary visual cortex, in which lateral excitatory connections were made in a diffusive manner between cell assemblies that function as orientation columns. A pair of bars oriented at specific angles, expressing a visual corner, was applied to the network. The local intracortical circuitry contributed not only to inducing correlated neuronal activation and thus to binding the paired features but also to making membrane potentials oscillate at firing-subthreshold during an ongoing-spontaneous time period. This led to accelerating the reaction speed of principal cells to the input. If the lateral excitatory connections were selectively (instead of “diffusively”) made, hyperpolarization in ongoing membrane potential occurred and thus the reaction speed was decelerated. We suggest that the local intracortical circuitry with diffusive connections between cell assemblies might endow the network with an ongoing subthreshold neuronal state, by which it can send the information about combinations of elemental features rapidly to higher cortical stages for their full and precise analyses.  相似文献   

11.
Through computational modeling, here we examine whether visual and task characteristics of writing systems alone can account for lateralization differences in visual word recognition between different languages without assuming influence from left hemisphere (LH) lateralized language processes. We apply a hemispheric processing model of face recognition to visual word recognition; the model implements a theory of hemispheric asymmetry in perception that posits low spatial frequency biases in the right hemisphere and high spatial frequency (HSF) biases in the LH. We show two factors that can influence lateralization: (a) Visual similarity among words: The more similar the words in the lexicon look visually, the more HSF/LH processing is required to distinguish them, and (b) Requirement to decompose words into graphemes for grapheme‐phoneme mapping: Alphabetic reading (involving grapheme‐phoneme conversion) requires more HSF/LH processing than logographic reading (no grapheme‐phoneme mapping). These factors may explain the difference in lateralization between English and Chinese orthographic processing.  相似文献   

12.
Previous neuroimaging research has attempted to demonstrate a preferential involvement of the human mirror neuron system (MNS) in the comprehension of effector-related action word (verb) meanings. These studies have assumed that Broca's area (or Brodmann's area 44) is the homologue of a monkey premotor area (F5) containing mouth and hand mirror neurons, and that action word meanings are shared with the mirror system due to a proposed link between speech and gestural communication. In an fMRI experiment, we investigated whether Broca's area shows mirror activity solely for effectors implicated in the MNS. Next, we examined the responses of empirically determined mirror areas during a language perception task comprising effector-specific action words, unrelated words and nonwords. We found overlapping activity for observation and execution of actions with all effectors studied, i.e., including the foot, despite there being no evidence of foot mirror neurons in the monkey or human brain. These "mirror" areas showed equivalent responses for action words, unrelated words and nonwords, with all of these stimuli showing increased responses relative to visual character strings. Our results support alternative explanations attributing mirror activity in Broca's area to covert verbalisation or hierarchical linearisation, and provide no evidence that the MNS makes a preferential contribution to comprehending action word meanings.  相似文献   

13.
Two findings serve as the hallmark for hemispheric specialization during lateralized lexical decision. First is an overall word advantage, with words being recognized more quickly and accurately than non-words (the effect being stronger in response latency). Second, a right visual field advantage is observed for words, with little or no hemispheric differences in the ability to identify non-words. Several theories have been proposed to account for this difference in word and non-word recognition, some by suggesting dual routes of lexical access and others by incorporating separate, and potentially independent, word and non-word detection mechanisms. We compare three previously proposed cognitive theories of hemispheric interactions (callosal relay, direct access, and cooperative hemispheres) through neural network modeling, with each network incorporating different means of interhemispheric communication. When parameters were varied to simulate left hemisphere specialization for lexical decision, only the cooperative hemispheres model showed both a consistent left hemisphere advantage for word recognition but not non-word recognition, as well as an overall word advantage. These results support the theory that neural representations of words are more strongly established in the left hemisphere through prior learning, despite open communication between the hemispheres during both learning and recall.  相似文献   

14.
The aim of the present behavioural experiment was to evaluate the most lateralized among two phonological (phoneme vs. rhyme detection) and the most lateralized among two semantic ("living" vs. "edible" categorization) tasks, within the dominant hemisphere for language. The reason of addressing this question was a practical one: to evaluate the degree of the hemispheric lateralization for several language tasks, by using the divided visual presentation of stimuli, and then choose the most lateralized semantic and phonological for mapping language in patients by using fMRI in future studies. During the divided visual field experiment by using words (semantic tasks) and pseudo-words (phonological tasks) as stimuli, thirty-nine right-handed participants were examined. Our results have shown that all tasks were significantly left hemisphere lateralized. Furthermore, the rhyme was significantly more lateralized than phoneme detection and "living" was significantly more lateralized than "edible" categorization. The rhyme decision and "living" categorization will be used in future fMRI studies for assessing hemispheric predominance and cerebral substrate for semantics and phonology in patients. Our results also suggest that the characteristics of stimuli could influence the degree of the hemispheric lateralization (i.e., the emotional charge of stimuli for words and the position of the phoneme to be detected, for pseudo-words).  相似文献   

15.
Cognitive functions like perception, memory, language, or consciousness are based on highly parallel and distributed information processing by the brain. One of the major unresolved questions is how information can be integrated and how coherent representational states can be established in the distributed neuronal systems subserving these functions. It has been suggested that this so-called "binding problem" may be solved in the temporal domain. The hypothesis is that synchronization of neuronal discharges can serve for the integration of distributed neurons into cell assemblies and that this process may underlie the selection of perceptually and behaviorally relevant information. As we intend to show here, this temporal binding hypothesis has implications for the search of the neural correlate of consciousness. We review experimental results, mainly obtained in the visual system, which support the notion of temporal binding. In particular, we discuss recent experiments on the neural mechanisms of binocular rivalry which suggest that appropriate synchronization among cortical neurons may be one of the necessary conditions for the buildup of perceptual states and awareness of sensory stimuli.  相似文献   

16.
In two lateralized tachistoscopic experiments, we presented (i) pairs of nouns with close or distant semantic associations or (ii) pairs of nouns which were randomly matched and later rated by the subjects as to their semantic distance. In both experiments, words presented to the right visual field were more frequently judged as semantically close in meaning than words presented to the left visual field (LVF), whereas words presented to the LVF were more frequently judged as semantically distant. The results are discussed in relation to hemispheric language functions and current models of cerebral laterality.  相似文献   

17.
Language anomalies and left-hemisphere dysfunction are commonly reported in schizophrenia. Additional evidence also suggests differences in the integration of information between the hemispheres. Bilateral gain is the increase in accuracy and decrease in latency that occurs when identical information is presented simultaneously to both hemispheres. This study measured bilateral gain in controls (n=20) and individuals with schizophrenia (n=10) using a lexical-decision task where word or non-word judgements were made to letter strings presented in the left visual field (LVF), right visual field (RVF) or bilaterally (BVF). Language was not abnormally lateralized in the schizophrenia group. Controls exhibited the expected decrease in latency when words were presented bilaterally. This effect was not observed in the schizophrenia group who were actually disadvantaged in this condition. The lack of bilateral gain in schizophrenia is discussed as arising from differences in the connections between areas in each hemisphere that mediate language.  相似文献   

18.
Researchers using lateralized stimuli have suggested that the left hemisphere is sensitive to sentence-level context, whereas the right hemisphere (RH) primarily processes word-level meaning. The authors investigated this message-blind RH model by measuring associative priming with event-related brain potentials (ERPs). For word pairs in isolation, associated words elicited more positive ERPs than unassociated words with similar magnitudes and onset latencies in both visual fields. Embedded in sentences, these same pairs showed large sentential context effects in both fields. Small effects of association were observed, confined to incongruous sentences after right visual hemifield presentation but present for both congruous and incongruous sentences after left visual hemifield presentation. Results do not support the message-blind RH model but do suggest hemispheric asymmetries in the use of word and sentence context during real-time processing.  相似文献   

19.
Previous studies have reported an interaction between visual field (VF) and word length such that word recognition is affected more by length in the left VF (LVF) than in the right VF (RVF). A reanalysis showed that the previously reported effects of length were confounded with orthographic neighborhood size (N). In three experiments we manipulated length and N in lateralized lexical decision tasks. Results showed that length and VF interacted even with N controlled (Experiment 1); that N affected responses to words in the LVF but not the RVF (Experiment 2); and that when length and N were combined, length only affected performance in the LVF for words with few neighbors.  相似文献   

20.
GOALS: Research with lateralized word presentation has suggested that strong ("close") and weak ("remote") semantic associates are processed differently in the left and right cerebral hemispheres [e.g., Beeman, M. j., & Chiarello, C. (1998). Complementary right- and left-hemisphere language comprehension. Current Directions in Psychological Science, 7(1), 2-8]. Recently, this hypothesis has been challenged [Coney, J. (2002). The effect of associative strength on priming in the cerebral hemispheres. Brain and Cognition, 50(2), 234-241]. We predicted that foveal presentation of strong and weak associates would elicit different patterns of hemispheric activity, as indexed by high-density event-related brain potentials (ERPs), and that source localization of the scalp potentials would help clarify the nature of hemispheric contributions to semantic organization. METHODS: 128-channel ERPs were recorded in two experiments as subjects performed a lexical decision task. Word trials were equally divided into strongly related, weakly related, and unrelated word pairs. All words were foveally presented. SOA was 800 ms in Experiment 1, and 200 ms in Experiment 2. RESULTS: Topographic analyses revealed medial frontal (MFN) and parietal (N400/LPC) effects for both strong and weak associates. Between approximately 450 and 550 ms, the magnitude of the N400/LPC effect indicated priming for both strong and weak associates over left parietal sites, while priming over right parietal sites was restricted to strongly related word pairs. During this interval, spatiotemporal source modeling showed that these scalp effects were best accounted for by ipsilateral sources in the medial temporal lobe. The observed pattern of asymmetries for strong versus weak associates is not consistent with certain proposals regarding the complementarity of right- and left-hemisphere contributions to semantics. It is, however, consistent with findings from visual half-field studies (Hasbrooke and Chiarello, 1998). We discuss the relevance of these results for theories of hemispheric asymmetry and meta-control in lexical semantic access.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号