首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extent to which orthographic and phonological processes are available during the initial moments of word recognition within each hemisphere is under specified, particularly for the right hemisphere. Few studies have investigated whether each hemisphere uses orthography and phonology under constraints that restrict the viewing time of words and reduce overt phonological demands. The current study used backward masking in the divided visual field paradigm to explore hemisphere differences in the availability of orthographic and phonological word recognition processes. A 20 ms and 60 ms SOA were used to track the time course of how these processes develop during pre-lexical moments of word recognition. Nonword masks varied in similarity to the target words such that there were four types: orthographically and phonologically similar, orthographically but not phonologically similar, phonologically but not orthographically similar and unrelated. The results showed the left hemisphere has access to both orthography and phonology early in the word recognition process. With more time to process the stimulus, the left hemisphere is able to use phonology which benefits word recognition to a larger extent than orthography. The right hemisphere also demonstrates access to both orthography and phonology in the initial moments of word recognition, however, orthographic similarity improves word recognition to a greater extent than phonological similarity.  相似文献   

2.
Positive words (e.g., faith) were recognised better when presented in white fonts than in black fonts, whereas the opposite was true for negative words (e.g., enemy). A neural basis for this type of association between emotional valence and brightness was investigated using a visual half-field paradigm. Positive and negative words were presented in black or white fonts and presented to the left visual field–right hemisphere (LVF–RH) or right visual field–left hemisphere (RVF–LH) in a word valence judgement task (i.e., positive vs. negative). A cross-over interaction between emotional valence and brightness was observed; valence judgements were facilitated when a positive word appeared in white and when a negative word appeared in black. This interaction was qualified by a higher-order interaction. The cross-over interaction appeared only for LVF–RH trials, suggesting that the right hemisphere was responsible for the association between emotional valence and brightness.  相似文献   

3.
语篇主题表征在大脑两半球的存贮   总被引:1,自引:0,他引:1  
使用半视野速示技术和启动—再认探测方法,采用包含两个句子的短语篇作为前行信息、通过主题启动、歧义词启动探测语段阅读时主题表征在大脑两半球的存贮情况,结果发现,无论是主题启动还是歧义词启动,左视野/右半脑和右视野/左半脑对语境相关的目标词反应时间都比不一致目标词更长,说明语段阅读后两半脑对主题表征都有存贮。  相似文献   

4.
The current experiment investigated how sentential form-class expectancies influenced lexical-semantic priming within each hemisphere. Sentences were presented that led readers to expect a noun or a verb and the sentence-final target word was presented to one visual field/hemisphere for a lexical decision response. Noun and verb targets in the semantically related condition were compared to an unrelated prime condition, which also predicted part of speech but did not contain any lexical-semantic associates of the target word. The semantic priming effect was strongly modulated by form-class expectancy for RVF/LH targets, for both nouns and verbs. In the LVF/RH, semantic priming was obtained in all conditions, regardless of whether the form-class expectancy was violated. However, the nouns that were preceded by a noun-predicting sentence showed an extremely high priming value in the LVF/RH, suggesting that the RH may have some sensitivity to grammatical predictions for nouns. Comparisons of LVF/RH priming to calculations derived from the LSA model of language representation, which does not utilize word order, suggested that the RH might derive message-level meaning primarily from lexical-semantic relatedness.  相似文献   

5.
夏全胜  彭刚石锋 《心理科学》2014,37(6):1333-1340
将ERP技术和半视野技术相结合,采用词汇判断任务,对汉语名词、动词和动名兼类词在左脑和右脑中的加工机制进行了考察。实验结果显示,名词和动词的N400仅在左视野/右脑存在差异,名词和动词的N400在左视野/右脑和右视野/左脑中都比偏(动)和偏(名)更负。不同词类的LPC在右视野/左脑中没有显著差异;偏(名)和偏(动)的LPC在左视野/右脑中比名词和动词更正。实验结果表明,在没有语境条件下,汉语名词和动词的差异主要在具体性上,动名兼类词体现出不同于名词、动词的加工机制。  相似文献   

6.
The split fovea theory proposes that visual word recognition of centrally presented words is mediated by the splitting of the foveal image, with letters to the left of fixation being projected to the right hemisphere (RH) and letters to the right of fixation being projected to the left hemisphere (LH). Two lexical decision experiments aimed to elucidate word recognition processes under the split fovea theory are described. The first experiment showed that when words were presented centrally, such that the initial letters were in the left visual field (LVF/RH), there were effects of orthographic neighborhood, i.e., there were faster responses to words with high rather than low orthographic neighborhoods for the initial letters ('lead neighbors'). This effect was limited to lead-neighbors but not end-neighbors (orthographic neighbors sharing the same final letters). When the same words were fully presented in the LVF/RH or right visual field (RVF/LH, Experiment 2), there was no effect of orthographic neighborhood size. We argue that the lack of an effect in Experiment 2 was due to exposure to all of the letters of the words, the words being matched for overall orthographic neighborhood count and the sub-parts no longer having a unique effect. We concluded that the orthographic activation found in Experiment 1 occurred because the initial letters of centrally presented words were projected to the RH. The results support the split fovea theory, where the RH has primacy in representing lead neighbors of a written word.  相似文献   

7.
This study investigated the orthographic and phonological contribution of visually masked primes to reading aloud in Dutch. Although there is a relatively clear mapping between the spelling and sound of words in Dutch, words starting with the letter c are ambiguous as to whether they begin with the phoneme /S/ (e.g., citroen, “lemon”) or with the phoneme /k/ (e.g., complot, “conspiracy”). Therefore, using words of this type, one can tease apart the contributions of orthographic and phonological activation in reading aloud. Dutch participants read aloud bisyllabic c-initial target words, which were preceded by visually masked, bisyllabic prime words that either shared the initial phoneme with the target (phonologically related) or the first grapheme (orthographically related) or both (phonologically and orthographically related). Unrelated primes did not share the first segment with the target. Response latencies in the phonologically related conditions were shorter than those in the unrelated condition. However, primes that were orthographically related did not speed up responses. One may conclude that the nature of the onset effect in reading aloud is phonological and not orthographic.  相似文献   

8.
Hemisphere dynamics in lexical access: automatic and controlled priming   总被引:10,自引:9,他引:1  
Hemisphere differences in lexical processing may be due to asymmetry in the organization of lexical information, in procedures used to access the lexicon, or both. Six lateralized lexical decision experiments employed various types of priming to distinguish among these possibilities. In three controlled (high probability) priming experiments, prime words could be used as lexical access clues. Larger priming was obtained for orthographically similar stimuli (BEAK-BEAR) when presented to the left visual field (LVF). Controlled priming based on phonological relatedness (JUICE-MOOSE) was equally effective in either visual field (VF). Semantic similarity (INCH-YARD) produced larger priming for right visual field (RVF) stimuli. These results suggest that the hemispheres may utilize different information to achieve lexical access. Spread of activation through the lexicon was measured in complementary automatic (low probability) priming experiments. Priming was restricted to LVF stimuli for orthographically similar words, while priming for phonologically related stimuli was only obtained in the RVF. Automatic semantic priming was present bilaterally, but was larger in the LVF. These results imply hemisphere differences in lexical organization, with orthographic and semantic relationships available to the right hemisphere, and phonological and semantic relations available to the left hemisphere. Support was obtained for hemisphere asymmetries in both lexical organization and directed lexical processing.  相似文献   

9.
A semantic relatedness decision task was used to investigate whether phonological recoding occurs automatically and whether it mediates lexical access in visual word recognition and reading. In this task, subjects read a pair of words and decided whether they were related or unrelated in meaning. In Experiment 1, unrelated word-homophone pairs (e.g., LION-BARE) and their visual controls (e.g., LION-BEAN) as well as related word pairs (e.g., FISH-NET) were presented. Homophone pairs were more likely to be judged as related or more slowly rejected as unrelated than their control pairs, suggesting phonological access of word meanings. In Experiment 2, word-pseudohomophone pairs (e.g., TABLE-CHARE) and their visual controls (e.g., TABLE-CHARK) as well as related and unrelated word pairs were presented. Pseudohomophone pairs were more likely to be judged as related or more slowly rejected as unrelated than their control pairs, again suggesting automatic phonological recoding in reading.  相似文献   

10.
A unilateral category matching task with words as stimuli was employed to investigate semantic processing in the right and left hemispheres (RH, LH). An overall right visual field (RVF)/LH dominance was observed and performances were better than chance, also in the left visual field (LVF)/RH. A qualitative analysis of reaction times with individual differences multidimensional scaling (INDSCAL) revealed that LVF/RH INDSCAL solutions were significantly more differentiated in structure than RVF/LH solutions in terms of number and size of dimensions. These findings support a depth of activation hypothesis of hemispheric processing, with the LH rapidly and focally and the RH slowly and diffusely activating the semantic network.  相似文献   

11.
The cerebral hemispheres have been proposed to engage different word recognition strategies: the left hemisphere implementing a parallel, and the right hemisphere, a sequential, analysis. To investigate this notion, we asked participants to name words with an early or late orthographic uniqueness point (OUP), presented horizontally to their left (LVF), right (RVF), or both fields of vision (BVF). Consistent with past foveal research, Experiment 1 produced a robust facilitatory effect of early OUP for RVF/BVF presentations, indicating the presence of sequential processes in lexical retrieval. The effect was absent for LVF trials, which we argue results from the disadvantaged position of initial letters of words presented in the LVF. To test this proposition, Experiment 2 assessed the discriminability of various letter positions in the visual fields using a bar-probe task. The obtained error functions highlighted the poor discriminability of initial letters in the LVF and latter letters in the RVF. To confirm that this asymmetry in initial letter acuity was responsible for the absent OUP effect for LVF presentations, Experiment 3 replicated Experiment 1 using vertical stimulus presentations. Results indicated a marked facilitatory effect of early OUP across visual fields, supporting our contention that the lack of OUP effect for LVF presentations in Experiment 1 resulted from poor discriminability of the initial letters. These findings confirm the presence of sequential processes in both left and right hemisphere word recognition, casting doubt on parallel models of word processing.  相似文献   

12.
Phonological coding in word reading: Evidence from hearing and deaf readers   总被引:14,自引:0,他引:14  
The ability of prelingually, profoundly deaf readers to access phonological information during reading was investigated in three experiments. The experiments employed a task, developed by Meyer, Schvaneveldt, and Ruddy (1974), in which lexical decision response times (RTs) to orthographically similar rhyming (e.g., WAVE-SAVE) and nortrhyming (e.g., HAVE-CAVE) word pairs were compared with RTs to orthographically and phonologically dissimilar control word pairs. The subjects of the study were deaf college students and hearing college students. In Experiments 1 and 2, in which the nonwords were pronounceable, the deaf subjects, like the hearing subjects, were facilitated in their RTs to rhyming pairs, but not to nonrhyming pairs. In Experiment 3, in which the nonwords were unpronounceable, both deaf and hearing subjects were facilitated in their RTs to both rhyming and nonrhyming pairs, with the facilitation being significantly greater for the rhyming pairs. These results indicate that access to phonological information is possible despite prelingual and profound hearing impairment. As such, they run counter to claims that deaf individuals are limited to the use of visual strategies in reading. Given the impoverished auditory, experience of such readers, these results suggest that the use of phonological information need not be tied to the auditory modality.  相似文献   

13.
Three experiments explore aspects of the dissociable neural subsystems theory of hemispheric specialisation proposed by Marsolek and colleagues, and in particular a study by [Deason, R. G., & Marsolek, C. J. (2005). A critical boundary to the left-hemisphere advantage in word processing. Brain and Language, 92, 251–261]. Experiment 1A showed that shorter exposure durations for lower-case words (13 ms) are associated with reduced right visual field (RVF) advantages compared with longer exposure durations (144 ms). Experiment 1B compared report accuracy for lower case and mixed case words at the same exposure duration (144 ms). The RVF advantage was reduced for mixed case words due to case alternation having more of an adverse effect in the RVF than in the LVF. Experiment 2 tested a different prediction of dissociable neural subsystems theory. Four-letter words were presented in mixed case in the LVF or RVF for 100 ms. They were preceded at the same location by a prime which could be in the same word in the same alternation pattern (e.g., FlAg–FlAg), the same word in the opposite alternation pattern (e.g., fLaG–FlAg), or an unrelated letter string in the same or opposite case alternation pattern (WoPk–FlAg or wOpK–FlAg). Relative to performance in the letter string prime conditions, which did not differ significantly between the two visual fields, there was more of an effect of word primes in the RVF than in the LVF. Importantly, the benefit of a word prime was the same whether the prime was in the same alternation pattern or was in the opposition alternation pattern. We argue that these results run contrary to the predictions of dissociable neural subsystems theory and are more compatible with theories which propose that a left hemisphere word recognition system is responsible for identifying written words, whether they are presented in the LVF or the RVF, and that letters are processed to an abstract graphemic level of representation before being identified by that system.  相似文献   

14.
Right-handed adults were asked to identify by name bilaterally presented words and pronounceable nonwords. For words in the normal horizontal format, word length (number of letters) affected left visual hemifield (LVF) but not right visual hemifield (RVF) performance in Experiments 1, 2, 3, 5, and 6. This finding was made for words of high and low frequency (Experiment 6) and imageability (Experiment 5). It also held across markedly different levels of overall performance (Experiments 1 and 2), and across different relative positionings of short and long words in the LVF and RVF (Experiment 3). Experiment 4 demonstrated that the variable affecting LVF performance is the number of letters in a word, not its phonological length. For pronounceable nonwords (Experiment 7) and words in unusual formats (Experiment 8), however, length affected both LVF and RVF performance. The characteristics identified for RVF performance in these experiments also hold for the normal reading system. In this (normal) system the absence of length effects for horizontally formatted words is generally taken to reflect the processes involved in lexical access. Length effects in the normal reading system are thought to arise when lexical access for unusually formatted words and for the pronunciation of nonwords requires the short-term storage of information at a graphemic level of analysis. The characteristics of LVF performance indicate that horizontally formatted words presented to the right cerebral hemisphere can only achieve lexical access by a method that requires the short-term storage of graphemic information. This qualitative difference in methods of lexical access applies regardless of whether the right hemisphere is seen as accessing words in the left hemisphere's lexicon or words in a lexicon of its own.  相似文献   

15.
Hemispheric asymmetry was examined for native English speakers identifying consonant-vowel-consonant (CVC) non-words presented in standard printed form, in standard handwritten cursive form or in handwritten cursive with the letters separated by small gaps. For all three conditions, fewer errors occurred when stimuli were presented to the right visual field/left hemisphere (RVF/LH) than to the left visual field/right hemisphere (LVF/RH) and qualitative error patterns indicated that the last letter was missed more often than the first letter on LVF/RH trials but not on RVF/LH trials. Despite this overall similarity, the RVF/LH advantage was smaller for both types of cursive stimuli than for printed stimuli. In addition, the difference between first-letter and last-letter errors was smaller for handwritten cursive than for printed text, especially on LVF/RH trials. These results suggest a greater contribution of the right hemisphere to the identification of handwritten cursive, which is likely related visual complexity and to qualitative differences in the processing of cursive versus print.  相似文献   

16.
Are processes of figurative comparison and figurative categorization different? An experiment combining alternative-sense and matched-sense metaphor priming with a divided visual field assessment technique sought to isolate processes of comparison and categorization in the 2 cerebral hemispheres. For target metaphors presented in the right visual field/left cerebral hemisphere (RVF/LH), only matched-sense primes were facilitative. Literal primes and alternative-sense primes had no effect on comprehension time compared to the unprimed baseline. The effects of matched-sense primes were additive with the rated conventionality of the targets. For target metaphors presented to the left visual field/right cerebral hemisphere (LVF/RH), matched-sense primes were again additively facilitative. However, alternative-sense primes, though facilitative overall, seemed to eliminate the preexisting advantages of conventional target metaphor senses in the LVF/RH in favor of metaphoric senses similar to those of the primes. These findings are consistent with tightly controlled categorical coding in the LH and coarse, flexible, context-dependent coding in the RH.  相似文献   

17.
A large orthographic neighborhood (N) facilitates lexical decision for central and left visual field/right hemisphere (LVF/RH) presentation, but not for right visual field/left hemisphere (RVF/LH) presentation. Based on the SERIOL model of letter-position encoding, this asymmetric N effect is explained by differential activation patterns at the orthographic level. This analysis implies that it should be possible to negate the LVF/RH N effect and create an RVF/LH N effect by manipulating contrast levels in specific ways. In Experiment 1, these predictions were confirmed. In Experiment 2, we eliminated the N effect for both LVF/RH and central presentation. These results indicate that the letter level is the primary locus of the N effect under lexical decision, and that the hemispheric specificity of the N effect does not reflect differential processing at the lexical level.  相似文献   

18.
Ten-year-old children performed a fragment completion task. Target fragments (e.g., T_ _N) were preceded by four types of study conditions. The identity condition consisted of the target (TURN). Themorphological condition included a related form (TURNED). The orthographic condition consisted of morphologically unrelated words (e.g., TURNIP). Finally, no similar word was presented in the study phase of the no-prime condition. Morphological relatives included orthographically transparent (TURNED-TURN) and orthographically opaque (RIDDEN-RIDE) forms. The results indicated that performance of child readers on the fragment completion task was sensitive to morphological relationships. Completion rates following opaque, as well as transparent, morphological relatives were significantly greater than those following orthographically similar forms. In sum, the fragment completion task provides a viable new tool for examining morphological processing in children and for differentiating morphological effects from effects of similar form.  相似文献   

19.
Hemispheric processing differences were assessed by presenting square matrices that varied in size and the number of filled-in cells. Subjects judged whether the matrix contained an even or odd number of filled cells. Experiment 1 employed relatively small matrix sizes (2 x 2, 3 x 3, and 4 x 4), and Experiment 2 employed relatively large matrix sizes (4 x 4, 6 x 6, and 8 x 8). Response time was shorter and error rates lower for left visual field/right hemisphere (LVF/RH) presentations compared to right visual field/left hemisphere (RVF/LH) presentations, with the larger matrices demonstrating the strongest visual field/hemispheric effects. Increases in the number of filled cells contributed to increases for the LVF/RH response time advantage only for the larger arrays. Analysis of the data from both studies collapsed across the number of filled cells produced highly consistent LVF/RH advantages for both response time and error rate, with stronger LVF/RH advantages found for the larger matrix sizes of both studies. The findings suggest that visual stimulus spatial frequency is a key determinant of hemispheric processing advantages, but that this factor is constrained by stimulus size variation. Theoretical implications with respect to the hemispheric processing double filtering by frequency model are discussed.  相似文献   

20.
Native Japanese speakers identified three-letter kana stimuli presented to the left visual field and right hemisphere (LVF/RH), to the right visual field and left hemisphere (RVF/LH), or to both visual fields and hemispheres simultaneously (BILATERAL trials). There were fewer errors on RVF/LH and BILATERAL trials than on LVF/RH trials. Qualitative analysis of error patterns indicated that there were many fewer errors of first-letter identification than of last-letter identification, suggesting top-to-bottom scanning of the kana characters. In contrast to similar studies presenting nonword letter trigrams to native English speakers, qualitative error patterns were identical for the three visual field conditions. Taken together with the results of earlier studies, the results of the present experiment indicate that the ubiquitous RVF/LH advantage reflects a left-hemisphere superiority for phonetic processing that generalizes across specific languages. At the same time, qualitative aspects of hemispheric asymmetry differ from one language to the next and may depend on such things as the way in which individual characters map onto the pronunciation of words and nonwords.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号