共查询到20条相似文献,搜索用时 0 毫秒
1.
In so-called Kripke-type models, each sentence is assigned either to true or to false at each possible world. In this setting, every possible world has the two-valued Boolean algebra as the set of truth values. Instead, we take a collection of algebras each of which is attached to a world as the set of truth values at the world, and obtain an extended semantics based on the traditional Kripke-type semantics, which we call here the algebraic Kripke semantics. We introduce algebraic Kripke sheaf semantics for super-intuitionistic and modal predicate logics, and discuss some basic properties. We can state the Gödel-McKinsey-Tarski translation theorem within this semantics. Further, we show new results on super-intuitionistic predicate logics. We prove that there exists a continuum of super-intuitionistic predicate logics each of which has both of the disjunction and existence properties and moreover the same propositional fragment as the intuitionistic logic. 相似文献
2.
Studia Logica - Pietruszczak (Bull Sect Log 38(3/4):163–171, 2009. https://doi.org/10.12775/LLP.2009.013) proved that the normal logics $$\mathrm {K45}$$, $$\mathrm {KB4}$$ ($$=\mathrm... 相似文献
3.
The Mares-Goldblatt semantics for quantified relevant logics have been developed for first-order extensions of R, and a range of other relevant logics and modal extensions thereof. All such work has taken place in the the ternary relation semantic framework, most famously developed by Sylvan (née Routley) and Meyer. In this paper, the Mares-Goldblatt technique for the interpretation of quantifiers is adapted to the more general neighbourhood semantic framework, developed by Sylvan, Meyer, and, more recently, Goble. This more algebraic semantics allows one to characterise a still wider range of logics, and provides the grist for some new results. To showcase this, we show, using some non-augmented models, that some quantified relevant logics are not conservatively extended by connectives the addition of which do conservatively extend the associated propositional logics, namely fusion and the dual implication. We close by proposing some further uses to which the neighbourhood Mares-Goldblatt semantics may be put. 相似文献
4.
In this paper we improve the results of [2] by proving the product f.m.p. for the product of minimal n-modal and minimal n-temporal logic. For this case we modify the finite depth method introduced in [1]. The main result is applied to identify new fragments of classical first-order logic and of the equational theory of relation algebras, that are decidable and have the finite model property. 相似文献
5.
Journal of Philosophical Logic - In Part I of this paper, we identified and compared various schemes for trivalent truth conditions for indicative conditionals, most notably the proposals by de... 相似文献
6.
The notion of an algebraic semantics of a deductive system was proposed in [3], and a preliminary study was begun. The focus of [3] was the definition and investigation of algebraizable deductive systems, i.e., the deductive systems that possess an equivalent algebraic semantics. The present paper explores the more general property of possessing an algebraic semantics. While a deductive system can have at most one equivalent algebraic semantics, it may have numerous different algebraic semantics. All of these give rise to an algebraic completeness theorem for the deductive system, but their algebraic properties, unlike those of equivalent algebraic semantics, need not reflect the metalogical properties of the deductive system. Many deductive systems that don't have an equivalent algebraic semantics do possess an algebraic semantics; examples of these phenomena are provided. It is shown that all extensions of a deductive system that possesses an algebraic semantics themselves possess an algebraic semantics. Necessary conditions for the existence of an algebraic semantics are given, and an example of a protoalgebraic deductive system that does not have an algebraic semantics is provided. The mono-unary deductive systems possessing an algebraic semantics are characterized. Finally, weak conditions on a deductive system are formulated that guarantee the existence of an algebraic semantics. These conditions are used to show that various classes of non-algebraizable deductive systems of modal logic, relevance logic and linear logic do possess an algebraic semantics. 相似文献
8.
We draw parallels between several closely related logics that combine — in different proportions — elements of game theory,
computation tree logics, and epistemic logics to reason about agents and their abilities. These are: the coalition game logics
CL and ECL introduced by Pauly 2000, the alternating-time temporal logic ATL developed by Alur, Henzinger and Kupferman between
1997 and 2002, and the alternating-time temporal epistemic logic ATEL by van der Hoek and Wooldridge (2002). In particular,
we establish some subsumption and equivalence results for their semantics, as well as interpretation of the alternating-time
temporal epistemic logic into ATL.
The focus in this paper is on models: alternating transition systems, multi-player game models (alias concurrent game structures)
and coalition effectivity models turn out to be intimately related, while alternating epistemic transition systems share much
of their philosophical and formal apparatus. Our approach is constructive: we present ways to transform between different
types of models and languages. 相似文献
9.
Free-variable semantic tableaux are a well-established technique for first-order theorem proving where free variables act as a meta-linguistic device for tracking the eigenvariables used during proof search. We present the theoretical foundations to extend this technique to propositional modal logics, including non-trivial rigorous proofs of soundness and completeness, and also present various techniques that improve the efficiency of the basic naive method for such tableaux. 相似文献
11.
增加特定的基数量词,扩张一阶语言,就可以导致实质性地增强语言的表达能力,这样许多超出一阶逻辑范围的数学概念就能得到处理。由于在模型的层次上基本模态逻辑可以看作一阶逻辑的互模拟不变片断,显然它不能处理这些数学概念。因此,增加说明后继状态类上基数概念的模态词,原则上我们就能以模态的方式处理所有基数。我们把讨论各种模型论逻辑的方式转移到模态方面。 相似文献
12.
概称句推理具有以词项为单位的特征并且词项的涵义在其中起到了重要的作用。已有的处理用A一表达式表达涵义,不够简洁和自然。亚里斯多德三段论是一种词项逻辑,但它是外延的和单调的。这两方面的情况使得有必要考虑新的词项逻辑。涵义语义的基本观点是:语词首先表达的是涵义,通过涵义的作用,语词有了指称,表达概念。概称句三段论是更为常用的推理,有两个基本形式GAG和Gaa。在涵义语义的基础上建立的系统GAG和Gaa是关于这两种推理的公理系统。 相似文献
13.
The Routley-Meyer relational semantics for relevant logics is extended to give a sound and complete model theory for many
propositionally quantified relevant logics (and some non-relevant ones). This involves a restriction on which sets of worlds
are admissible as propositions, and an interpretation of propositional quantification that makes ∀ pA true when there is some true admissible proposition that entails all p-instantiations of A. It is also shown that without the admissibility qualification many of the systems considered are semantically incomplete,
including all those that are sub-logics of the quantified version of Anderson and Belnap’s system E of entailment, extended
by the mingle axiom and the Ackermann constant t. The incompleteness proof involves an algebraic semantics based on atomless complete Boolean algebras. 相似文献
14.
In this article we deal with Glivenko type theorems for intuitionistic modal logics over Prior's MIPC. We examine the problems which appear in proving Glivenko type theorems when passing from the intuitionistic propositional logic Intto MIPC. As a result we obtain two different versions of Glivenko's theorem for logics over MIPC. Since MIPCcan be thought of as a one-variable fragment of the intuitionistic predicate logic Q-Int, one of the versions of Glivenko's theorem for logics over MIPCis closely related to that for intermediate predicate logics obtained by Umezawa [27] and Gabbay [15]. Another one is rather surprising. 相似文献
15.
When it comes to Kripke-style semantics for quantified modal logic, there’s a choice to be made concerning the interpretation of the quantifiers. The simple approach is to let quantifiers range over all possible objects, not just objects existing in the world of evaluation, and use a special predicate to make claims about existence (an existence predicate). This is the constant domain approach. The more complicated approach is to assign a domain of objects to each world. This is the varying domain approach. Assuming that all terms denote, the semantics of predication on the constant domain approach is obvious: either the denoted object has the denoted property in the world of evaluation, or it hasn’t. On the varying domain approach, there’s a third possibility: the object in question doesn’t exist. Terms may denote objects not included in the domain of the world of evaluation. The question is whether an atomic formula then should be evaluated as true or false, or if its truth value should be undefined. This question, however, cannot be answered in isolation. The consequences of one’s choice depends on the interpretation of molecular formulas. Should the negation of a formula whose truth value is undefined also be undefined? What about conjunction, universal quantification and necessitation? The main contribution of this paper is to identify two partial semantics for logical operators, a weak and a strong one, which uniquely satisfy a list of reasonable constraints (Theorem 2.1). I also show that, provided that the point of using varying domains is to be able to make certain true claims about existence without using any existence predicate, this result yields two possible partial semantics for quantified modal logic with varying domains. 相似文献
16.
引入非良基集合可以为模态逻辑提供一种新的语义学。这种语义是在集合上解释模态语言,使用集合中作为元素的集合之间的属于关系解释模态词,并在集合中采用命题变元作为本元,从而解释原子命题的真假。在这种新的语义下,从模型构造的角度看可以引入几种非标准的集合运算:不交并、生成子集合、p-态射、树展开等等,证明模态公式在这些运算下的保持或不变结果。利用这些结果还可以证明一些集合类不是模态可定义的。 相似文献
17.
A reactive graph generalizes the concept of a graph by making it dynamic, in the sense that the arrows coming out from a point depend on how we got there. This idea was first applied to Kripke semantics of modal logic in [2]. In this paper we strengthen that unimodal language by adding a second operator. One operator corresponds to the dynamics relation and the other one relates paths with the same endpoint. We explore the expressivity of this interpretation by axiomatizing some natural subclasses of reactive frames. The main objective of this paper is to present a methodology to study reactive logics using the existent classic techniques. 相似文献
18.
A logic is called metacomplete if formulas that are true in a certain preferred interpretation of that logic are theorems in its metalogic. In the area of relevant logics, metacompleteness is used to prove primeness, consistency, the admissibility of γ and so on. This paper discusses metacompleteness and its applications to a wider class of modal logics based on contractionless relevant logics and their neighbours using Slaney’s metavaluational technique. 相似文献
19.
The simplest bimodal combination of unimodal logics \(\text {L} _1\) and \(\text {L} _2\) is their fusion, \(\text {L} _1 \otimes \text {L} _2\), axiomatized by the theorems of \(\text {L} _1\) for \(\square _1\) and of \(\text {L} _2\) for \(\square _2\), and the rules of modus ponens, necessitation for \(\square _1\) and for \(\square _2\), and substitution. Shehtman introduced the frame product \(\text {L} _1 \times \text {L} _2\), as the logic of the products of certain Kripke frames: these logics are two-dimensional as well as bimodal. Van Benthem, Bezhanishvili, ten Cate and Sarenac transposed Shehtman’s idea to the topological semantics and introduced the topological product \(\text {L} _1 \times _t \text {L} _2\), as the logic of the products of certain topological spaces. For almost all well-studies logics, we have \(\text {L} _1 \otimes \text {L} _2 \subsetneq \text {L} _1 \times \text {L} _2\), for example, \(\text {S4} \otimes \text {S4} \subsetneq \text {S4} \times \text {S4} \). Van Benthem et al. show, by contrast, that \(\text {S4} \times _t \text {S4} = \text {S4} \otimes \text {S4} \). It is straightforward to define the product of a topological space and a frame: the result is a topologized frame, i.e., a set together with a topology and a binary relation. In this paper, we introduce topological-frame products \(\text {L} _1 \times _ tf \text {L} _2\) of modal logics, providing a complete axiomatization of \(\text {S4} \times _ tf \text {L} \), whenever \(\text {L} \) is a Kripke complete Horn axiomatizable extension of the modal logic D: these extensions include \(\text {T} , \text {S4} \) and \(\text {S5} \), but not \(\text {K} \) or \(\text {K4} \). We leave open the problem of axiomatizing \(\text {S4} \times _ tf \text {K} \), \(\text {S4} \times _ tf \text {K4} \), and other related logics. When \(\text {L} = \text {S4} \), our result confirms a conjecture of van Benthem et al. concerning the logic of products of Alexandrov spaces with arbitrary topological spaces. 相似文献
20.
Every truth-functional three-valued propositional logic can be conservatively translated into the modal logic S5. We prove this claim constructively in two steps. First, we define a Translation Manual that converts any propositional formula of any three-valued logic into a modal formula. Second, we show that for every S5-model there is an equivalent three-valued valuation and vice versa. In general, our Translation Manual gives rise to translations that are exponentially longer than their originals. This fact raises the question whether there are three-valued logics for which there is a shorter translation into S5. The answer is affirmative: we present an elegant linear translation of the Logic of Paradox and of Strong Three-valued Logic into S5. 相似文献
|