首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BackgroundFor many decades, car-following (CF) and congestion models have assumed a basic invariance: drivers’ default driving strategy is to keep the safety distance. The present study questions that Driving to keep Distance (DD) is a traffic invariance and, therefore, that the difference between the time required to accelerate versus decelerate must necessarily determine the observed patterns of traffic oscillations. Previous studies have shown that drivers can adopt alternative CF strategies like Driving to keep Inertia (DI) by following basic instructions. The present work aims to test the effectiveness of a DI course that integrates 4 tutorials and 4 practice sessions in a standard PC computer designed to learn more adaptive driving behaviors in dense traffic. Methods. Sixty-eight drivers were invited to follow a leading car that varied its speed on a driving simulator, then they took a DI course on a PC computer, and finally they followed a fluctuating leader again on the driving simulator. The study adopted a pretest-intervention-posttest design with a control group. The experimental group took the full DI course (tutorials and then simulator practice). The control group had access to the DI simulator but not to the tutorials. Results. All participating drivers adopted DD as the default CF mode on the pre-test, yielding very similar results. But after taking the full DI course, the experimental group showed significantly less accelerations, decelerations, and speed variability than the control group, and required greater CF distance, that was dynamically adjusted, spending less fuel in the post-test. A group of 8 virtual cars adopting DD required less space on the road to follow the drivers that took the DI course.  相似文献   

2.
Driving simulators are highly valuable tools for various applications such as research, training, and rehabilitation. However, they are also known to cause simulator sickness, a special form of traditional motion sickness. Common side effects of simulator sickness include nausea, headache, dizziness, eye-strain, and/or disorientation, all symptoms which may negatively impact driving performance. The goal of the present study was to investigate the relationship between simulator sickness and driving performance obtained in a high-fidelity driving simulator. Twenty-one healthy participants were engaged in a simulated driving task containing rural, city, and highway sections for approx. 25 min. Participants were asked to drive naturally while obeying traffic rules and completing common driving maneuvers (including reactions to sudden events). Driving performance was evaluated based on various driving measures, such as lane positioning, speed measures, following distance, or the number of steering reversals. Simulator sickness was measured before, during, and after the simulated drive using a combination of the Simulator Sickness Questionnaire and the Fast Motion Sickness scale. Overall, correlations between the level of simulator sickness and driving performance measures were low to moderate (r’s from -0.37 to 0.40) and were not significant. Additionally, participants who reported higher levels of simulator sickness did not differ with regards to their driving performance from those who reported lower simulator sickness scores. Our results suggest that the presence of simulator sickness is not strongly related to performance in a driving simulator.  相似文献   

3.
BackgroundDriving simulators have become an important research tool in road safety. They provide a safer environment to test driving performance and have the capacity to manipulate and control situations that are not possible on-road.AimTo validate a laboratory-based driving simulator in measuring on-road driving performance by type and mean driving errors.MethodsParticipants were instructed to drive a selected route on-road. The same route was programmed in the driving simulator using the UC/Win-road software. All participants completed a background questionnaire. On-road driving behaviours of participants and driving behaviours in the simulator were assessed by an occupational therapist and two trained researchers using an assessment form. Interclass correlations were calculated to assess the inter-rater agreement between the researchers on driving behaviours. Paired t-tests were used to assess differences in driving performance between the simulator and on-road assessments.ResultsA convenience sample of 47 drivers aged 18–69 years who held a current Western Australian class C licence (passenger vehicle) were recruited into the study. The mean age was 34.80 years (SD: 13.21) with twenty-six males (55.32%) and 21 females (44.68%) completing the study. There was no statistical difference between the on-road assessment and the driving simulator for mirror checking, left, right and forward observations, speed at intersections, maintaining speed, obeying traffic lights and stop signs.ConclusionThe preliminary results provide early support for the relative validity of the driving simulator which may be used for a variety of road safety outcomes with reduced risk of harm to participants.  相似文献   

4.
Driver distraction is one major cause of road traffic accidents. In order to avoid distraction-related accidents it is important to inhibit irrelevant stimuli and unnecessary responses to distractors and to focus on the driving task, especially when unpredictable critical events occur. Since inhibition is a cognitive function that develops until young adulthood and decreases with increasing age, young and older drivers should be more susceptible to distraction than middle-aged drivers. Using a driving simulation, the present study investigated effects of acoustic and visual distracting stimuli on responses to critical events (flashing up brake lights of a car ahead) in young, middle-aged, and older drivers. The task difficulty was varied in three conditions, in which distractors could either be ignored (perception-only), or required a simple response (detection) or a complex Go-/NoGo-response (discrimination). Response times and error rates to the critical event increased when a simultaneous reaction to the distractor was required. This distraction effect was most pronounced in the discrimination condition, in which the participants had to respond to some of the distracting stimuli and to inhibit responses to some other stimuli. Visual distractors had a stronger impact than acoustic ones. While middle-aged drivers managed distractor inhibition even in difficult tasks quite well (i.e., when responses to distracting stimuli had to be suppressed), response times of young and old drivers increased significantly, especially when distractor stimuli had to be ignored. The results demonstrate the high impact of distraction on driving performance in critical traffic situations and indicate a driving-related inhibition deficit in young and old drivers.  相似文献   

5.
This study assessed driver performance while navigating a Diverging Diamond Interchange (DDI) compared to a standard intersection in a driving simulator. A total of 201 Western Australian (WA) drivers aged 18–80 years completed the simulator drive and questionnaire. Measures of driving simulator performance assessed included time spent out of lane, number of lane excursions, compliance to the speed limit, crashes and near misses. Other driving measures, which were recorded by the researcher, included driver errors/violations such as red-light violations, wrong way violations and navigation errors. Qualitative information was also obtained in a post exit interview with each participant regarding the difficulties they experienced when driving through the DDI. A repeated-measure analysis of variance (r-ANOVA) was undertaken to examine differences in intersection type (DDI versus standard intersection) and driving performance measures from the driving simulator. The only significant result was compliance to the speed limit (F (1, 656) = 160.11, p < 0.001) on the driving simulator. A higher proportion of red-light violations were observed by the researcher as participants navigated through the DDI, compared to the standard intersection. Qualitative comments from participants also highlighted the need for better signage and road markings. Recommendations when DDIs are implemented include community education on speed limit compliance, avoidance of red-light violations and design improvements regarding signage and road markings.  相似文献   

6.
Driving simulators have become an important tool in human factors research, given that they are appropriately validated. Therefore, this study aims to explore the behavioral (absolute and relative) validity of a fixed-base driving simulator by analyzing different driving behavior measures such as speed, longitudinal acceleration, lateral acceleration, and brake pedal force. Thirty professional drivers participated in the experiment and the data was collected in real and simulated worlds under No Time Pressure (NTP) and Time Pressure (TP) driving conditions. Initially, comparative analyses were conducted on different driving behavior measures using Wilcoxon-signed rank test to examine absolute validity of the driving simulator. Finally, Generalized Linear Mixed (GLM) models were developed for computing the effective distance between real and simulated worlds by quantifying the parameters and for establishing relative validity. In general, the continuous profiles of driving behavior measures followed similar trends in real and simulated worlds and comparative analyses indicated relative validity of the driving simulator. The GLM models showed significant interaction effect of driving environments (real-world and simulated world) and driving conditions (NTP and TP) where high driving speed, high brake pedal force, and low lateral acceleration were observed in simulated world under TP driving condition than real-world under TP driving condition. Overall, the statistical analyses showed qualitative correspondence (relative validity) of the driving behavior measures in between real and simulated worlds. The findings from the current study showed expediency of the driving simulator and its effectiveness in conducting research on human factors and driver safety.  相似文献   

7.
About 200 highway wrong-way driving cases occur annually in Japan, of which about 70% are caused by older drivers. The number of these cases has remained consistent despite adoption of full-fledged measures against wrong-way driving, thus demonstrating the need for further measures. Reports indicate that older drivers include those with cognitive decline. Moreover, it has been revealed that drivers over 75 years of age who caused wrong-way driving had lower test scores in the usual cognitive function tests performed at the time of licence renewal. However, there is no clear evidence on the relationship between cognitive decline and driving behaviour that stimulates wrong-way driving. In this paper, we reproduced a wrong-way driving approaching a right turn to an expressway exit in a virtual environment using a driving simulator for older drivers, including those with mild cognitive impairment (MCI). In addition to the measurement of driving behaviour and eye-tracking during simulator driving, we conducted a cognitive function test to investigate the relationship between driving behaviour and visual behaviour factors that initiate reverse running and cognitive decline. The results revealed that the reason for the start of a highway wrong-way driving may be a human error at the recognition stage of overlooking a visual wrong-way driving countermeasure, or a human error at the judgement stage of failing to suppress action despite noticing the visual countermeasure. Additionally, attentional and executive functions were related to the wrong-way initiative, although MCI did not affect it. This suggests that those who could not control their wrong-way driving behaviour despite observing the signs had specific executive function deficits.  相似文献   

8.
When analyzing the causes of an accident, it is critical to determine whether the driver could have prevented the accident. In previous studies on the reaction times of drivers, the definition and values of reaction times vary, so applying reaction time is difficult. In such analysis, the driver’s reaction time from perception is required to determine whether the driver could have prevented the accident, but past studies are difficult to utilize in accident analysis as reaction time measurements were taken after the occurrence of hazardous situations. In this study, 93 subjects from age groups ranging from 20 s to 40 s participated in an experiment inside a full-scale driving simulator, to determine reaction time values that can be practically applied to accident analysis. A total of 4 hazardous accident situations were reproduced, including driving over the centerline, pedestrian jaywalking, a vehicle cutting in, and intersection traffic signal violation. The Time-To-Collision (TTC) was 2.5 s and the driving speed was set to the common city road speed limits of 60 and 80 km/h. An eye tracker was used to determine the driver’s Saccade Latency (SL) during hazardous situations. Brake Reaction Time from Perception (BRTP), Steer Reaction Time from Perception (SRTP), and Driver Reaction Time from Perception (DRTP) were derived, and the measurements were statistically analyzed to investigate differences by age group, gender, speed, and type of hazardous situation. Most participants were found to avoid collisions by braking first rather than steering for the presented hazardous situations, except for the cutting in situation. Also, to determine a reaction time that would cover most drivers, the 85th percentile of DRTP was calculated. The 85th percentile of DRTP was in the range of 0.550 – 0.800 s. Specifically for each hazardous situation, it was 0.650 s for driving over the centerline, 0.800 s for the pedestrian jaywalking, 0.660 s for cutting in, and 0.550 s for the intersection traffic signal violation. For all 4 hazardous situations combined, the 85th percentile of DRTP was 0.646 s. The findings can be utilized to determine the driver’s likelihood of avoiding accidents when faced with similar hazardous situations.  相似文献   

9.
In driver behaviour research there is considerable focus on distraction caused by specific external systems, such as navigation systems or mobile telephones. However, it is not clear whether self-paced actions such as daydreaming have the same negative effects on driving behaviour. In a driving simulator study, the effects of an internal cognitive process (internal distraction) on driving behaviour and physiological data were compared to the effects of a sound and speech task (external distraction). Three groups of participants made two drives on a motorway, with one control group, one internal distraction group and one external distraction group. Dependent measures included driving behavioural measures, physiological measures and a subjective indication of participants’ experienced involvement in the driving task.The effects of both the internal and external distraction task were reflected in speed, number of lane changes, deceleration, glances and subjective ratings. When an effect was found for both the internal and the external distraction task, the results indicated similar (negative) effects. Participants also indicated that they had the feeling they were less involved in the driving task with both secondary tasks.  相似文献   

10.
BackgroundAs road complexity increases the requirement for number of road signs also increases, although the amount of road side space does not. One practical strategy to address this is to present multiple road signs on the same gantry (sign co-location). However, there is very little research on the safety implications of this practice.Method36 participants (mean age = 42.25 years, SD = 13.99, 18 females) completed three driving simulator scenarios, each scenario had a different sign co-location condition: no co-location, dual co-location and triple co-location. Each scenario presented similar information using direction signs, variable message signs and variable speed limit signs, under. Each drive included standard motorway driving (100 km/h speed zone) in free flow traffic and one emergency event where a lead vehicle suddenly braked. The scenario order was counterbalanced and the emergency event vehicle varied.ResultsOverall, there was no impact of co-locating signs on general driving performance. No significant difference was observed between conditions for reaction time and minimum headway in response to the emergency event. Participants were able to correctly choose their destination whether the signs were co-located or not.DiscussionFor the particular configuration of signs tested there is no evidence that co-location negatively impacts driving performance. However, there may be some implications for travel speed and the manner in which the emergency event is responded to. Future work should confirm the findings on real roads. These findings provided support for sign co-location as a practical and safe option for displaying multiple road signs in a confined area.  相似文献   

11.
Rural roads are characterized by a high percentage of run-off-the-road accidents and head-on collisions, mainly caused by inappropriate speeds and failure to maintain a proper lateral position along the roadway alignment. Among several road safety treatments, low-cost perceptual measures are considered an effective tool, as they generally increase the risk perceived by drivers, or even alter the drivers’ speed perception, and consequently tempting them to decrease their speeds. Their effectiveness has been widely recognized in a number of studies, especially with respect to road intersections and curves.The overall aim of this study is to investigate the effects of different perceptual treatments on driving speed, along a crest vertical curve of an existing two-lane rural road, in order to identify the most effective measure to reduce speed and define its subsequent implementation in the field. Three perceptual treatments were tested using a driving simulator: white peripheral transverse bars, red peripheral transverse bars and optical speed bars, with each one being painted along the approaching tangent to the crest vertical curve. The effects of these speed-reducing measures were investigated using a sample of forty-four participants, by comparing the driving speeds with those recorded under a baseline condition (without a treatment); these were also used to validate the driving simulator’s speed measurements with those found in the field. Moreover, subjective measures were collected, consisting of the driver’s static evaluation of the desired speed, risk perception and markings comprehension, based on screen shot pictures that represented the simulated configurations of the treatments.The findings demonstrated an overall effectiveness of the perceptual treatments, although only the red peripheral transverse bars were found to significantly reduce the driving speeds (−6 km/h). The analysis of the questionnaire yielded interesting information and demonstrated the importance of performing driving simulation tests for evaluating the effectiveness of perceptual treatments.Finally, the results confirmed the enormous potential of using driving simulators to pinpoint a number of speed-reducing measures, and consequently select the most effective one that reduces cost and promotes safety before its actual implementation in the field.  相似文献   

12.
Road traffic crashes are currently one of the main causes of deaths in the world and many efforts have been made to develop effective interventions to reduce them. Mindfulness has risen as a method for improving mental and physical well-being and has been hypothesized as potentially beneficial for driving performance. This has led to some commercial ventures based on such hypothesis, despite that the empirical evidence backing up them is still limited. Besides, at the moment there is not yet a clear account of the specific mechanism underlying this proposals. So, it seems plausible that the relationship between mindfulness and driving performance is indirect, and that personality traits such as conscientiousness and neuroticism may play a mediation role between mindfulness and driving performance. A sample of 98 drivers between the ages of 19 and 29 completed questionnaires assessing mindfulness, anxiety trait and anxiety state, and the big five personality traits. Driving performance was assessed in a driving simulator. A mediation model was fitted with conscientiousness and neuroticism set as mediators of the effects of the relationship between the subject’s mindfulness levels and the driving performance.  相似文献   

13.
The main objective of this driving simulator study is to analyze the behavior of the driver at the start of the yellow signal of a signalized rural intersection and identify the most effective countermeasures for tackling the dilemma zone, namely an area on the intersection approach where vehicles at the start of the yellow phase can neither safely stop before the stop line nor cross the intersection. The following countermeasures were tested in the study on a sample of 48 drivers: green signal countdown timers, GSCT (C1); a new pattern of vertical and horizontal warning signs (C2); and an advanced on-board driver assistance system based on augmented reality (AR) and connected vehicle technologies (C3). These countermeasures were tested and compared to a baseline condition (B) where no countermeasures were applied. Based on the results of this study, the C2 and C3 countermeasures have proven to be valid tools for reducing driver indecision when approaching signalized intersections at the start of the yellow signal. In fact, using C2 and C3, the length of the dilemma zone was equal to 30 m and 36 m, respectively, with a reduction of about 50%, as compared to the baseline condition (B). Moreover, a reduced number of false behaviors was recorded, as well as a greater consistency in driver decision-making behaviors. Conversely, the C1 countermeasure did not lead to a significant improvement in the dilemma zone: an unnecessary increase in early stop rates was recorded, resulting in reduced intersection efficiency and operations.  相似文献   

14.
15.
To gain new insights for driving assessment and training, this study had two objectives: (1) to investigate the relations between specific measures of older drivers’ driving ability and demographic/functional ability measures, and (2) to verify the explained variance of these relations to determine the strength of these relations. A sample of 55 older drivers (mean age 76 years) completed a set of functional ability tests as well as a driving simulator test. Results indicate that (1) each specific driving measure is related to a specific set of functional abilities, and (2) only a small proportion of the variability observed in the specific driving measures is explained by demographic variables (3–15%) and by functional abilities (7–36%). For driving assessment programs, it will be necessary to assess several functional abilities to cover the complexity of the driving task. Furthermore, an assessment program focusing solely on demographic and/or functional ability measures, will not be successful in discriminating safe from unsafe older drivers. For driving training programs, it will be necessary to focus on the right set of functional abilities given that specific driving measures are related to different functional abilities. Moreover, a training targeting functional abilities might only have marginal effects on driving ability, given the relatively low amount of driving ability variance that is explained by functional abilities.  相似文献   

16.
A review of the literature on autonomous vehicles has shown that they offer several benefits, such as reducing traffic congestion and emissions, and improving transport accessibility. Until the highest level of automation is achieved, humans will remain an important integral of the driving cycle, which necessitates to fully understand their role in automated driving. A difficult research topic involves an understanding of whether a period of automated driving is likely to reduce driver fatigue rather than increase the risk of distraction, particularly when drivers are involved in a secondary task while driving. The main aim of this research comprises assessing the effects of an automation period on drivers, in terms of driving performance and safety implications. A specific focus is set on the car-following maneuver. A driving simulator experiment has been designed for this purpose. In particular, each participant was requested to submit to a virtual scenario twice, with level-three driving automation: one drive consisting of Full Manual Control Mode (FM); the other comprising an Automated Control Mode (AM) activated in the midst of the scenario. During the automation mode, the drivers were asked to watch a movie on a tablet inside the vehicle. When the drivers had to take control of the vehicle, two car-following maneuvers were planned, by simulating a slow-moving vehicle in the right lane in the meanwhile a platoon of vehicles in the overtaking lane discouraged the passing maneuver. Various driving performances (speeds, accelerations, etc.) and surrogate safety measures (PET and TTC) were collected and analysed, focusing on car-following maneuvers. The overall results indicated a more dangerous behavior of drivers who were previously subjected to driving automation; the percentage of drivers who did not apply the brakes and headed into the overtaking lane despite the presence of a platoon of fast-moving vehicles with unsafe gaps between them was higher in AM drive than in FM drive. Conversely, for drivers who preferred to brake, it was noted that those who had already experienced automated driving, adopted a more careful behavior during the braking maneuver to avoid a collision. Finally, with regard to drivers who had decided to overtake the braking vehicle, it should be noted that drivers who had already experienced automated driving did not change their behavior whilst overtaking the stopped lead vehicle.  相似文献   

17.
Currently, young drivers are more likely than other drivers to use cell phones while driving at night, which has become a major cause of road crashes. However, limited attention has been given to distracted nighttime driving. Therefore, the aim of this study was to explore the interaction effect of cell phone use and time of day (daytime and nighttime) on young drivers’ car-following performance. Forty-three young drivers engaged in a driving simulator experiment with a within-subject design that included three distractions (no distraction, talking and texting on a cell phone) and two times of day. This paper applied non-parametric tests to analyze the data and obtained the following results: (1) the standard deviation of lane position (SDLP) did not significantly differ at either time of day under no distraction, but it was significantly higher at night on straight roads and large-radius curves after introducing distractions. In addition, participants drove faster and gave less headway on small-radius curves under both distractions at night; (2) texting significantly increased the SDLP, while there was less lateral variation during the talking tasks than under no distraction on simple road sections; and (3) compared with the experienced drivers, the novice drivers drove faster during the talking tasks on small-radius curves, but there was no significant difference between groups during the texting tasks. These findings provide both theoretical and practical implications for related policy makers to enhance traffic safety.  相似文献   

18.
Recently, distractions have been recognized as a significant risk factor in road traffic. This simulator study aims to investigate how different music genres affect the driving behaviour of young drivers and their visual scanning of the environment in urban settings. The genres considered were Croatian pop, foreign pop, classical music, metal, and Balkan folk music, while on one road section there was no music. The research sample consisted of 61 participants (44 males and 17 females) with a mean age of 24.58 years and a mean driving experience of 5.25 years. The influence of music on the drivers’ behaviour was analysed on the basis of the data collected from the driving simulator, eye tracking glasses, and structured observation during driving sessions. It was found that the highest average speed (around 60 km/h) was recorded while the participants were listening to Balkan folk and metal music, while other music genres, as well as the “no music” condition, influenced driving speed in a similar way to one another and the participants drove at 50 km/h on average. Furthermore, the results suggest that the music genre also affects how drivers visually scan the environment (the number of gazes classified as fixations and number of road signs looked at). The findings obtained may be used in road safety work and practical recommendations and further research are discussed.  相似文献   

19.
ObjectiveThis paper explores the links between driving style and the biological behavior of people while driving with dangerous negative emotions (such as anger, anxiety, and fear).BackgroundIt is highly important to study the behavior of humans from varying aspects to discover the factors affecting it. Driving style, as one of the critical aspects of the human factor, and biological behavior, as a factor influencing the performance of individuals, motivate us to examine the relationship between the two.MethodFor this purpose, a test was designed to record the biological signal data, namely, the Electrocardiogram (ECG), Electroencephalogram (EEG), Electromyogram (EMG), and Electrodermal activity (EDA), in a driving simulator with driving events prompting negative emotions. The Multidimensional Driving Style Inventory (MDSI) was employed to determine the driving style of participants.ResultsCorrelation analysis was engaged for data analysis. The results showed, firstly, a significant relationship between the participants’ driving style and their biological behavior and, secondly, the highest correlation between the EEG signal and driving style. Moreover, participants with a nervous and anxious style showed maximum change in biological behavior, while those with a reckless style displayed minimum alterations in biological behavior at the time of unpleasant events during driving.ConclusionConduction of such research can help better understand the behavior of different people while facing unpleasant driving events.  相似文献   

20.
Automated vehicles (AVs) are expected to improve traffic flow efficiency and safety. The deployment of AVs on motorways is expected to be the first step in their implementation. One of the main concerns is how human drivers will interact with AVs. Dedicating specific lanes to AVs have been suggested as a possible solution. However, there is still a lack of evidence-based research on the consequence of dedicated lanes for AVs on human drivers’ behavior. To bridge this research gap, a driving simulator experiment was conducted to investigate the behavior of human drivers exposed to different road design configurations of dedicated lanes on motorways. The experiment sample consisted of 34 (13 female) licensed drivers in the age range of 20–30. A repeated measures ANOVA was applied, which revealed that the type of separation between the dedicated lane and the other lanes has a significant influence on the behavior of human drivers driving in the proximity of AV platoons. Human drivers maintained a significantly lower time headway (THW) when driving in the proximity of a continuous access dedicated lane as compared to a limited-access dedicated lane with a guardrail separation for AV platoons. A similar result was found for the limited-access dedicated lane in comparison to the limited-access dedicated lane with guardrail separation. Moreover, the results regarding the empirical relationships between THW and sociodemographic variables indicate a significant THW difference between males and females as well as a significant inverse relationship between THW and the years of driving experience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号