首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Difficult tasks are commonly equated with complex tasks across many behaviors. Motor task difficulty is traditionally defined via Fitts’ law, using evaluation criteria based on spatial movement constraints. Complexity of data is typically evaluated using non-linear computational approaches. In this project, we investigate the potential to evaluate task difficulty via behavioral (motor performance) complexity in a Fitts-type task. Use of non-linear approaches allows for inclusion of many features of motor actions that are not currently included in the Fitts-type paradigm. Our results indicate that tasks defined as more difficult (using Fitts movement IDs) are not associated with complex motor behaviors; rather, an inverse relationship exists between these two concepts. Use of non-linear techniques allowed for the detection of behavioral differences in motor performance over the entire action trajectory in the presence of action errors and among neutrally co-constrained effectors not detected using traditional Fitts’-type analyses utilizing movement time measures. Our findings indicate that task difficulty may potentially be inferred using non-linear measures, particularly in ecological situations that do not obey the Fitts-type testing paradigm. While we are optimistic regarding these initial findings, further work is needed to assess the full potential of the approach.  相似文献   

2.
ABSTRACT

The authors explored changes in the postural preparation and movement times during jumps into targets of different sizes placed at different distances from the participant. Both movement and preparation times scaled with movement distance. Neither movement nor preparation time showed an effect of target size, although preparation time showed a tendency to increase for smaller targets. These observations show that the classical Fitts’ law can be violated in tasks that involve a ballistic component. The data corroborate a hypothesis that Fitts’ law originates at the level of movement planning.  相似文献   

3.
A substantial body of research has examined the speed-accuracy tradeoff captured by Fitts’ law, demonstrating increases in movement time that occur as aiming tasks are made more difficult by decreasing target width and/or increasing the distance between targets. Yet, serial aiming movements guided by internal spatial representations, rather than by visual views of targets have not been examined in this manner, and the value of confirmatory feedback via different sensory modalities within this paradigm is unknown. Here we examined goal-directed serial aiming movements (tapping back and forth between two targets), wherein targets were visually unavailable during the task. However, confirmatory feedback (auditory, haptic, visual, and bimodal combinations of each) was delivered upon each target acquisition, in a counterbalanced, within-subjects design. Each participant performed the aiming task with their pointer finger, represented within an immersive virtual environment as a 1 cm white sphere, while wearing a head-mounted display. Despite visual target occlusion, movement times increased in accordance with Fitts’ law. Though Fitts’ law captured performance for each of the sensory feedback conditions, the slopes differed. The effect of increasing difficulty on movement times was least influential in the haptic condition, suggesting more efficient processing of confirmatory haptic feedback during aiming movements guided by internal spatial representations.  相似文献   

4.
Motor disorders are a frequent consequence of acquired brain injury (ABI) in children and much effort is currently invested in alleviating these deficits. The aim of the present study was to test motor imagery (MI) capabilities in children with ABI (n=25) and an age- and gender-matched control group (n=25). A computerized Virtual Radial Fitts Task (VRFT) was used to investigate the speed-accuracy trade-offs (or Fitts' law) that occur as target size is varied for both executed and imagined performance. In the control group, the speed for accuracy trade-off for both executed and imagined performance conformed to Fitts' law. In the ABI group, only executed movements conformed to Fitts' law. These findings suggest that children with ABI show an inferior ability to imagine the time needed to complete goal-directed movements with differential difficulty levels.  相似文献   

5.
Models of motor control have highlighted the role of temporal predictive mechanisms in sensorimotor processing of speech and limb movement timing. We investigated how these mechanisms are affected in Parkinson’s disease (PD) while patients performed speech and hand motor reaction time tasks in response to sensory stimuli with predictable and unpredictable temporal dynamics. Results showed slower motor reaction times in PD vs. control in response to temporally predictable, but not unpredictable stimuli. This effect was driven by faster motor responses to predictable stimuli in control subjects; however, no such effect was observed in the PD group. These findings indicated the relationship between PD pathology and sensorimotor deficits in temporal predictive mechanisms of timing processing during speech production and hand movement.  相似文献   

6.
Children with developmental dyslexia (DD) may differ from typical readers in aspects other than reading. The notion of a general deficit in the ability to acquire and retain procedural (‘how to’) knowledge as long‐term procedural memory has been proposed. Here, we compared the ability of elementary school children, with and without reading difficulties (DD, typical readers), to improve their tactile discrimination with practice and tested the children's ability to retain the gains. Forty 10–11‐year‐olds practiced the tactile discrimination of four braille letters, presented as pairs, while blindfolded. In a trial, participants were asked to report whether the target stimuli were identical or different from each other. The structured training session consisted of six blocks of 16 trials each. Performance was re‐tested at 24 hours and two weeks post‐training. Both groups improved in speed and in accuracy. In session 1, children with DD started as significantly less accurate and were slower than the typical readers but showed rapid learning and successfully closed the gap. Only two children with DD failed to benefit from training and were not included in subsequent data analyses. At 24 hours post‐training both groups showed effective retention of the gains in speed and accuracy. Importantly, children with DD were able to retain the gains in speed and accuracy, over a two‐week interval as effectively as typical readers. Thus, children with DD were as effective in the acquisition and retention of tactile discrimination of braille letters as typical readers of the same age. The results do not support the notion of a general procedural learning disability in DD.  相似文献   

7.
What determines the sensory impression of a self-generated motor image? Motor imagery is a process in which subjects imagine executing a body movement with a strong kinesthetic and/or visual component from a first-person perspective. Both sensory modalities can be combined flexibly to form a motor image. 90 participants of varying ages had to freely generate motor images from a large set of movements. They were asked to rate their kinesthetic as well as their visual impression, the perceived vividness, and their personal experience with the imagined movement. Data were subjected to correlational analyses, linear regressions, and representation similarity analyses. Results showed that both action characteristics and experience drove the sensory impression of motor images with a strong individual component. We conclude that imagining actions that impose varying demands can be considered as reexperiencing actions by using one’s own sensorimotor representations that represent not only individual experience but also action demands.  相似文献   

8.
Stevens JA 《Cognition》2005,95(3):329-350
Four experiments were completed to characterize the utilization of visual imagery and motor imagery during the mental representation of human action. In Experiment 1, movement time functions for a motor imagery human locomotion task conformed to a speed-accuracy trade-off similar to Fitts' Law, whereas those for a visual imagery object motion task did not. However, modality-specific interference effects in Experiment 2 demonstrate visual and motor imagery as cooperative processes when the action represented is tied to visual coordinates in space. Biomechanic-specific motor interference effects found in Experiment 3 suggest one basis for separation of processing channels within motor imagery. Finally, in Experiment 4 representations of motor actions were found to be generated using only visual imagery under certain circumstances: namely, when the imaginer represented the motor action of another individual while placed at an opposing viewpoint. These results suggest that the modality of representation recruited to generate images of human action is dependent on the dynamic relationship between the individual, movement, and environment.  相似文献   

9.
Abstract

Previous research suggests that using Fitts’ law; attentional focus or challenge point framework (CPF) is beneficial in balance control studies. A scoping review was conducted to examine studies that utilized these motor behavior concepts during balance control tasks. An extensive literature search was performed up to January 2018. Two independent reviewers conducted a study selection process followed by data extraction of the search results. Forty-six studies were identified, with 2 studies related to CPF, 12 studies related to Fitts’ law and 32 studies related to focus of attention. The CPF appears to be a useful method for designing a progressive therapeutic program. Fitts’ law can be used as a tool for controlling the difficulty of motor tasks. Focus of attention studies indicate that adopting an external focus of attention improves task performance. Overall, studies included in this review report benefit when using the selected motor behavior concepts. However, the majority (>80%) of studies included in the review involved healthy populations, with only three clinical trials. In order to ascertain the benefits of the selected motor behavior concepts in clinical settings, future research should focus on using these concepts for clinical trials to examine balance control among people with balance impairments.  相似文献   

10.
11.
李莹  商玲玲 《心理科学》2017,40(1):29-36
当前研究采用事件相关电位(ERPs)技术,同时沿用经典的句图匹配范式,考察句子理解中物体典型颜色与非典型颜色的心理加工过程在脑电活动上的反映。实验中被试先阅读句子再判断句子后呈现的图片物体是否在句子中出现过,句子中隐含的物体颜色或是关键物体的典型颜色或是非典型颜色。实验结果发现,典型颜色句子版本下句图不匹配条件比句图匹配条件引发了更大的N400效应;而非典型颜色句子版本下两者N400差异不显著。研究结果表明,人们在汉语句子理解过程中会实时对隐含的物体颜色信息进行心理模拟。并且,句子隐含物体颜色的典型性是造成匹配易化或不匹配易化的关键因素之一。  相似文献   

12.
There are cells in our motor cortex that fire both when we perform and when we observe similar actions. It has been suggested that these perceptual‐motor couplings in the brain develop through associative learning during correlated sensorimotor experience. Although studies with adult participants have provided support for this hypothesis, there is no direct evidence that associative learning also underlies the initial formation of perceptual–motor couplings in the developing brain. With the present study we addressed this question by manipulating infants’ opportunities to associate the visual and motor representation of a novel action, and by investigating how this influenced their sensorimotor cortex activation when they observed this action performed by others. Pre‐walking 7–9‐month‐old infants performed stepping movements on an infant treadmill while they either observed their own real‐time leg movements (Contingent group) or the previously recorded leg movements of another infant (Non‐contingent control group). Infants in a second control group did not perform any steps and only received visual experience with the stepping actions. Before and after the training period we measured infants’ sensorimotor alpha suppression, as an index of sensorimotor cortex activation, while they watched videos of other infants’ stepping actions. While we did not find greater sensorimotor alpha suppression following training in the Contingent group as a whole, we nevertheless found that the strength of the visuomotor contingency experienced during training predicted the amount of sensorimotor alpha suppression at post‐test in this group. We did not find any effects of motor experience alone. These results suggest that the development of perceptual–motor couplings in the infant brain is likely to be supported by associative learning during correlated visuomotor experience.  相似文献   

13.
Behavioral research has shown that infants use both behavioral cues and verbal cues when processing the goals of others’ actions. For instance, 18-month-olds selectively imitate an observed goal-directed action depending on its (in)congruence with a model’s previous verbal announcement of a desired action goal. This EEG-study analyzed the electrophysiological underpinnings of these behavioral findings on the two functional levels of conceptual action processing and motor activation. Mid-latency mean negative ERP amplitude and mu-frequency band power were analyzed while 18-month-olds (N = 38) watched videos of an adult who performed one out of two potential actions on a novel object. In a within-subjects design, the action demonstration was preceded by either a congruent or an incongruent verbally announced action goal (e.g., “up” or “down” and upward movement). Overall, ERP negativity did not differ between conditions, but a closer inspection revealed that in two subgroups, about half of the infants showed a broadly distributed increased mid-latency ERP negativity (indicating enhanced conceptual action processing) for either the congruent or the incongruent stimuli, respectively. As expected, mu power at sensorimotor sites was reduced (indicating enhanced motor activation) for congruent relative to incongruent stimuli in the entire sample. Both EEG correlates were related to infants’ language skills. Hence, 18-month-olds integrate action-goal-related verbal cues into their processing of others’ actions, at the functional levels of both conceptual processing and motor activation. Further, cue integration when inferring others’ action goals is related to infants’ language proficiency.  相似文献   

14.
Fitts’ law was found to hold for discrete movements executed by subjects controlling the velocity of a cursor with a control stick. The slope of movement time versus index of difficulty was approximately twice as large as for a comparable position control system. Target uncertainty also increased the slope of total time versus index of difficulty, and this effect is interpreted in terms of adaptive tuning of the human movement system.  相似文献   

15.
We examined the role of action in motor and perceptual timing across development. Adults and children aged 5 or 8 years old learned the duration of a rhythmic interval with or without concurrent action. We compared the effects of sensorimotor versus visual learning on subsequent timing behaviour in three different tasks: rhythm reproduction (Experiment 1), rhythm discrimination (Experiment 2) and interval discrimination (Experiment 3). Sensorimotor learning consisted of sensorimotor synchronization (tapping) to an isochronous visual rhythmic stimulus (ISI = 800 ms), whereas visual learning consisted of simply observing this rhythmic stimulus. Results confirmed our hypothesis that synchronized action during learning systematically benefitted subsequent timing performance, particularly for younger children. Action‐related improvements in accuracy were observed for both motor and perceptual timing in 5 years olds and for perceptual timing in the two older age groups. Benefits on perceptual timing tasks indicate that action shapes the cognitive representation of interval duration. Moreover, correlations with neuropsychological scores indicated that while timing performance in the visual learning condition depended on motor and memory capacity, sensorimotor learning facilitated an accurate representation of time independently of individual differences in motor and memory skill. Overall, our findings support the idea that action helps children to construct an independent and flexible representation of time, which leads to coupled sensorimotor coding for action and time.  相似文献   

16.
This study investigates the influence of activating specific motor codes on the comprehension of passages that describe the use of an object requiring similar motor manipulations. In three experiments, participants either imagined or pantomimed performing an action involving a common object. Participants then held the action in memory while reading a brief story, which described another object that required similar or different motor behaviors. Reading times were collected on the complementary actions. Finally, participants acted out the original action. In Exp. 1 and 2, reading slowed to the verbs. Exp. 2 revealed the slowing to be true interference, which disappeared in Exp. 3 when the action did not need to be recalled. The results suggest that readers activate motor codes when reading story actions, which supports an embodied view. The results also indicate that activated codes bound to an action will, at least briefly, impair reading about a complementary action requiring the same codes, consistent with Hommel's (2009) theory of event coding.  相似文献   

17.
Children with Developmental Coordination Disorder (DCD) have difficulty imagining movements such that they conform to the customary temporal constraints of real performance. We examined whether this ability is influenced by the choice of task used to elicit motor imagery (MI). Performance of typically developing (TD) (n = 30) and children with DCD (n = 30) was compared on two tasks: the Visually Guided Pointing Task (VGPT) and the Computerized Virtual Radial Fitts Task (C-VRFT). Since the VGPT places higher demands on executive functions like working memory but requires less spatial planning, we reasoned that the C-VRFT would provide a purer measure of motor imagery (or simulation). Based on our earlier work, we predicted that imagery deficits in DCD would more likely manifest on the C-VRFT. Results showed high correlations between tasks in terms of executed and imagined movement time suggest that both tasks measure MI ability. However, group differences were more pronounced in the imagined condition of the radial Fitts’ task. Taken together, the more spatially complex C-VRFT appears to be a more sensitive measure of motor imagery, better discriminating between DCD and TD. Implications for theory and practice are discussed.  相似文献   

18.
Abnormalities of motor and praxis imagery in children with DCD   总被引:1,自引:0,他引:1  
In an earlier study using the visually guided pointing task (VGPT) the authors showed that the timing of imagined movement sequences in children with developmental coordination disorder (DCD) does not conform to the conventional speed-for-accuracy trade-off (or Fitts' law [P.M. Fitts, Journal of Experimental Psychology 47 (1954) 381-391]) that occurs when the distance and accuracy requirements of movements are varied [P. Maruff, P.H. Wilson, M. Trebilcock, J. Currie, Neuropsychologia 37 (1999b) 1317-1324]. The present study sought to replicate this earlier finding and to examine (using a weight manipulation) whether this deficit was also attributable to inaccurate programming of relative force. The chronometry of real and imagined movements was investigated in a group of 20 children with DCD aged between 8 and 12 years and a group of controls matched on age and verbal IQ (VIQ). Movement duration was tested for real and imagined movements using the preferred hand, with the VGPT performed under two load conditions: with and without the addition of a weight attached to a pen. Group means of each subjects' mean movement duration were calculated and plotted against target width for each of the four conditions [Movement type (2) x Load (2)] and a logarithmic curve was fitted to the data points. In the control group, the speed-for-accuracy trade-off for both real and imagined performance conformed to Fitts' law under each load condition. In the DCD group only real movements conformed to Fitts' law. Moreover, the effect of load differed between groups--for real movements, movement duration did not differ between load and no-load conditions for either group, while for imagined movements, movement duration increased under the load condition for the control group only. These results replicate and extend the results of our earlier study. This pattern of performance suggests that children with DCD have an impairment in the ability to generate internal representations of volitional movements which may reflect an impaired ability to process efference copy signals. The ability to programme both relative force and timing appears to underly this difficulty. Results have implications for the use of (guided) motor imagery training in order to facilitate the development of motor skill in children with DCD.  相似文献   

19.
Intentional motor action is typically characterized by the decision about the timing, and the selection of the action variant, known as the “what” component. We compared free action selection with instructed action, where the movement type was externally cued, in order to investigate the action selection and action representation in a Libet’s task. Temporal and spatial locus of these processes was examined using the combination of high-density electroencephalography, topographic analysis of variance, and source reconstruction. Instructed action, engaging representation of the response movement, was associated with distinct negativity at the parietal and centro-parietal channels starting around 750 ms before the movement, which has a source particularly in the bilateral inferior parietal lobule. This suggests that in delayed-action tasks, the process of action representation in the inferior parietal lobule may play an important part in the larger parieto-frontal activity responsible for movement selection.  相似文献   

20.
During social interactions we often have an automatic and unconscious tendency to copy or ‘mimic’ others’ actions. The dominant view on the neural basis of mimicry appeals to an automatic coupling between perception and action. It has been suggested that this coupling is formed through associative learning during correlated sensorimotor experience. Although studies with adult participants have provided support for this hypothesis, little is known about the role of sensorimotor experience in supporting the development of perceptual‐motor couplings, and consequently mimicry behaviour, in infancy. Here we investigated whether the extent to which an observed action elicits mimicry depends on the opportunity an infant has had to develop perceptual‐motor couplings for this action through correlated sensorimotor experience. We found that mothers’ tendency to imitate their 4‐month‐olds’ facial expressions during a parent‐child interaction session was related to infants’ facial mimicry as measured by electromyography. Maternal facial imitation was not related to infants’ mimicry of hand actions, and instead we found preliminary evidence that infants’ tendency to look at their own hands may be related to their tendency to mimic hand actions. These results are consistent with the idea that mimicry is supported by perceptual‐motor couplings that are formed through correlated sensorimotor experience obtained by observing one's own actions and imitative social partners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号