首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current study examined the effects of globally depleting Purkinje cells in the cerebellar cortex with the immunotoxin OX7-saporin on acquisition and extinction of delay eyeblink conditioning in rats. Rats were given OX7-saporin or saline 2 wk before the start of eyeblink conditioning. The rats that reached a performance criterion of two consecutive days with 80% or greater conditioned responses were given 5 d of extinction training followed by 2 d of reacquisition training. Rats that received infusions of OX7-saporin had 77.2%-97.9% Purkinje cell loss and exhibited impaired acquisition and extinction. The amount of Purkinje cell loss was correlated with the magnitude of the acquisition and extinction impairments. The highest correlations between Purkinje cell number and the rate of acquisition were in lobule HVI and the anterior lobe. The highest negative correlation between Purkinje cell number and the percentage of conditioned responses during extinction was in the anterior lobe. The results indicate that cerebellar Purkinje cells, particularly in the anterior lobe and lobule HVI, play significant roles in acquisition and extinction of eyeblink conditioning.  相似文献   

2.
Whisker deflection is an effective conditioned stimulus (CS) for trace eyeblink conditioning that has been shown to induce a learning-specific expansion of whisker-related cortical barrels, suggesting that memory storage for an aspect of the trace association resides in barrel cortex. To examine the role of the barrel cortex in acquisition and retrieval of trace eyeblink associations, the barrel cortex was lesioned either prior to (acquisition group) or following (retention group) trace conditioning. The acquisition lesion group was unable to acquire the trace conditioned response, suggesting that the whisker barrel cortex is vital for learning trace eyeblink conditioning with whisker deflection as the CS. The retention lesion group exhibited a significant reduction in expression of the previously acquired conditioned response, suggesting that an aspect of the trace association may reside in barrel cortex. These results demonstrate that the barrel cortex is important for both acquisition and retention of whisker trace eyeblink conditioning. Furthermore, these results, along with prior anatomical whisker barrel analyses suggest that the barrel cortex is a site for long-term storage of whisker trace eyeblink associations.  相似文献   

3.
The effects of bilateral hippocampal aspiration lesions on later acquisition of eyeblink conditioning were examined in developing Long-Evans rat pups. Lesions on postnatal day (PND) 10 were followed by evaluation of trace eyeblink conditioning (Experiment 1) and delay eyeblink conditioning (Experiment 2) on PND 25. Pairings of a tone conditioned stimulus (CS) and periocular shock unconditioned stimulus (US, 100 ms) were presented in one of three conditioning paradigms: trace (380 ms CS, 500 ms trace interval, 880 ms interstimulus interval [ISI]), standard delay (380 ms CS, 280 ms ISI), or long delay (980 ms CS, 880 ms ISI). The results of two experiments indicated that hippocampal lesions impaired trace eyeblink conditioning more than either type of delay conditioning. In light of our previous work on the ontogeny of trace, delay, and long-delay eyeblink conditioning (Ivkovich, Paczkowski, & Stanton, 2000) showing that trace and long-delay eyeblink conditioning had similar ontogenetic profiles, the current data suggest that during ontogeny hippocampal maturation may be more important for the short-term memory component than for the long-ISI component of trace eyeblink conditioning. The late development of conditioning over long ISIs may depend on a separate process such as protracted development of cerebellar cortex.  相似文献   

4.
Richard F. Thompson's cerebellar model of classical eyeblink conditioning highlights Purkinje cells in cerebellar cortex and principal cells in the deep cerebellar nucleus as the integrating cells for acquisition of conditioned responses (CRs). CR acquisition is significantly slower in rabbits with lesions to cerebellar cortex and in Purkinje cell-deficient mice that lose all cerebellar cortical Purkinje cells. Purkinje cells are the largest neurons in the cerebellum and contribute significantly to cerebellar volume. Magnetic resonance imaging (MRI) was used to assess cerebellar volume in humans. Cerebellar volume was related to eyeblink conditioning (400-ms delay procedure) in 8 adults (21-35 years) and compared to 8 older adults (77-95 years) tested previously (Woodruff-Pak, Goldenberg, Downey-Lamb, Boyko, & Lemieux, 2000). In the young adult sample, there was a high correlation between percentage of CRs in a session and cerebellar volume (corrected for total intracranial volume [TIV], r =.58, p =.066). There were statistically significant age differences in cerebellar volume, t(14) = 8.96, p <.001, and percentage of CRs, t(14) = 3.85, p <.002, but no age difference in TIV. Combining the young and older adult sample, the correlation between percentage of CRs and cerebellar volume (corrected for TIV) was.832 (p <.001). Cerebellar volume showed age-related deficits likely due to Purkinje cell loss. Individual differences in classical eyeblink conditioning are associated with differences in cerebellar volume, supporting Thompson's model of a cerebellar cortical role in facilitating this form of associative learning.  相似文献   

5.
The essential neural circuitry for delay eyeblink conditioning has been largely identified, whereas much of the neural circuitry for trace conditioning has not been identified. The major difference between delay and trace conditioning is a time gap between the presentation of the conditioned stimulus (CS) and the unconditioned stimulus (US) during trace conditioning. It is this time gap or trace interval which accounts for an additional memory component in trace conditioning. Additional neural structures are also necessary for trace conditioning, including hippocampus and prefrontal cortex. This addition of forebrain structures necessary for trace but not delay conditioning suggests other brain areas become involved when a memory gap is added to the conditioning parameters. A metabolic marker of energy use, radioactively labeled glucose analog, was used to compare differences in glucose analog uptake between delay, trace, and unpaired experimental groups in order to identify new areas of involvement within the cerebellum. Known structures such as the interpositus nucleus and lobule HVI showed increased activation for both delay and trace conditioning compared to unpaired conditioning. However, there was a differential amount of activation between anterior and posterior portions of the interpositus nucleus between delay and trace, respectively. Cerebellar cortical areas including lobules IV and V of anterior lobe, Crus I, Crus II, and paramedian lobule also showed increases in activity for delay conditioning but not for trace conditioning. Delay and trace eyeblink conditioning both resulted in increased metabolic activity within the cerebellum but delay conditioning resulted in more widespread cerebellar cortical activation.  相似文献   

6.
A large body of evidence indicates that the cerebellum is essential for the acquisition, retention, and expression of the standard delay conditioned eyeblink response and that the basic memory trace appears to be established in the anterior interpositus nucleus (IP). Adaptive timing of the conditioned response (CR) is a prominent feature of classical conditioning—the CR peaks at the time of onset of the unconditioned stimulus (US) over a wide range of CS-US interstimulus intervals (ISI). A key issue is whether this timing is established by the cerebellar circuitry or prior to the cerebellum. In this study timing of conditioned eyeblink responses established via electrical stimulation of the interpositus nucleus as a conditioned stimulus (CS) was analyzed prior to and following modification of the CS-US interval in well-trained rabbits. Consistent with previous results, learning under these conditions is very rapid and robust. The CR peak eyeblink latencies are initially timed to the US onset and adjust accordingly to lengthening or shortening of the CS-US interval, just as with peripheral CSs. The acquisition of conditioned eyeblink responses by direct electrical stimulation of the IP as a CS thus retains temporal flexibility following shifts in the CS-US delay, as found in standard classical eyeblink conditioning procedures.  相似文献   

7.
A large body of evidence indicates that the cerebellum is essential for the acquisition, retention, and expression of the standard delay conditioned eyeblink response and that the basic memory trace appears to be established in the anterior interpositus nucleus (IP). Adaptive timing of the conditioned response (CR) is a prominent feature of classical conditioning-the CR peaks at the time of onset of the unconditioned stimulus (US) over a wide range of CS-US interstimulus intervals (ISI). A key issue is whether this timing is established by the cerebellar circuitry or prior to the cerebellum. In this study timing of conditioned eyeblink responses established via electrical stimulation of the interpositus nucleus as a conditioned stimulus (CS) was analyzed prior to and following modification of the CS-US interval in well-trained rabbits. Consistent with previous results, learning under these conditions is very rapid and robust. The CR peak eyeblink latencies are initially timed to the US onset and adjust accordingly to lengthening or shortening of the CS-US interval, just as with peripheral CSs. The acquisition of conditioned eyeblink responses by direct electrical stimulation of the IP as a CS thus retains temporal flexibility following shifts in the CS-US delay, as found in standard classical eyeblink conditioning procedures.  相似文献   

8.
Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of parallel fiber synapses on Purkinje cells and long-term potentiation of mossy fiber synapses on neurons in the anterior interpositus nucleus. Conditioned stimulus and unconditioned stimulus inputs arise from the pontine nuclei and inferior olive, respectively, converging in the cerebellar cortex and deep nuclei. Projections from subcortical sensory nuclei to the pontine nuclei that are necessary for eyeblink conditioning are beginning to be identified, and recent studies indicate that there are dynamic interactions between sensory thalamic nuclei and the cerebellum during eyeblink conditioning. Cerebellar output is projected to the magnocellular red nucleus and then to the motor nuclei that generate the blink response(s). Tremendous progress has been made toward determining the neural mechanisms of delay eyeblink conditioning but there are still significant gaps in our understanding of the necessary neural circuitry and plasticity mechanisms underlying cerebellar learning.  相似文献   

9.
Renewal of an extinguished conditioned response has been demonstrated in humans and in animals using various types of procedures, except renewal of motor learning such as eyeblink conditioning. We tested renewal of delay and trace eyeblink conditioning in a virtual environment in an ABA design. Following acquisition in one context (A, e.g., an airport) and extinction in a different context (B, e.g., a city), tests for renewal took place in the acquisition (A) and extinction context (B), in a counterbalanced order. Results showed renewal of the extinguished conditioned response in the delay but not trace condition.  相似文献   

10.
The cerebellar anterior lobe may play a critical role in the execution and proper timing of learned responses. The current study was designed to monitor Purkinje cell activity in the rabbit cerebellar anterior lobe after eyeblink conditioning, and to assess whether Purkinje cells in recording locations may project to the interpositus nucleus. Rabbits were trained in an interstimulus interval discrimination procedure in which one tone signaled a 250-msec conditioned stimulus-unconditioned stimulus (CS-US) interval and a second tone signaled a 750-msec CS-US interval. All rabbits showed conditioned responses to each CS with mean onset and peak latencies that coincided with the CS-US interval. Many anterior lobe Purkinje cells showed significant learning-related activity after eyeblink conditioning to one or both of the CSs. More Purkinje cells responded with inhibition than with excitation to CS presentation. In addition, when the firing patterns of all conditioning-related Purkinje cells were pooled, it appeared that the population showed a pattern of excitation followed by inhibition during the CS-US interval. Using cholera toxin-conjugated horseradish peroxidase, Purkinje cells in recording areas were found to project to the interpositus nucleus. These data support previous studies that have suggested a role for the anterior cerebellar cortex in eyeblink conditioning as well as models of cerebellar-mediated CR timing that postulate that Purkinje cell activity inhibits conditioned response (CR) generation during the early portion of a trial by inhibiting the deep cerebellar nuclei and permits CR generation during the later portion of a trial through disinhibition of the cerebellar nuclei.  相似文献   

11.
The rodent eyeblink conditioning paradigm is an ideal model system for examining the relationship between neural maturation and the ontogeny of associative learning. Elucidation of the neural mechanisms underlying the ontogeny of learning is tractable using eyeblink conditioning because the necessary neural circuitry (cerebellum and interconnected brainstem nuclei) underlying the acquisition and retention of the conditioned response (CR) has been identified in adult organisms. Moreover, the cerebellum exhibits substantial postnatal anatomical and physiological maturation in rats. The eyeblink CR emerges developmentally between postnatal day (PND) 17 and 24 in rats. A series of experiments found that the ontogenetic emergence of eyeblink conditioning is related to the development of associative learning and not related to changes in performance. More recent studies have examined the relationship between the development of eyeblink conditioning and the physiological maturation of the cerebellum, a brain structure that is necessary for eyeblink conditioning in adult organisms. Disrupting cerebellar development with lesions or antimitotic treatments impairs the ontogeny of eyeblink conditioning. Studies of the development of physiological processes within the cerebellum have revealed striking ontogenetic changes in stimulus-elicited and learning-related neuronal activity. Neurons in the interpositus nucleus and Purkinje cells in the cortex exhibit developmental increases in neuronal discharges following the unconditioned stimulus (US) and in neuronal discharges that model the amplitude and time-course of the eyeblink CR. The developmental changes in CR-related neuronal activity in the cerebellum suggest that the ontogeny of eyeblink conditioning depends on the development of mechanisms that estavlish cerebellar plasticity. Learning and the induction of neural plasticity depend on the magnitude of the US input to the cerebellum. The role of developmental changes in the efficacy of the US pathway has been investigated by monitoring neuronal activity in the inferior olive and with stimulation techniques. The results of these experiments indicate that the development of the conditioned eyeblink response may depend on dynamic interactions between multiple developmental processes within the eyeblink neural circuitry.  相似文献   

12.
The neural plasticity necessary for acquisition and retention of eyeblink conditioning has been localized to the cerebellum. However, the sources of sensory input to the cerebellum that are necessary for establishing learning-related plasticity have not been identified completely. The inferior colliculus may be a source of sensory input to the cerebellum through its projection to the medial auditory thalamus. The medial auditory thalamus is necessary for eyeblink conditioning in rats and projects to the lateral pontine nuclei, which then project to the cerebellar nuclei and cortex. The current experiment examined the role of the inferior colliculus in auditory eyeblink conditioning. Rats were given bilateral or unilateral (contralateral to the conditioned eye) lesions of the inferior colliculus prior to 10 d of delay eyeblink conditioning with a tone CS. Rats with bilateral or unilateral lesions showed equivalently impaired acquisition. The extent of damage to the contralateral inferior colliculus correlated with several measures of conditioning. The findings indicate that the contralateral inferior colliculus provides auditory input to the cerebellum that is necessary for eyeblink conditioning.  相似文献   

13.
The rodent eyeblink conditioning paradigm is an ideal model system for examining the relationship between neural maturation and the ontogeny of associative learning. Elucidation of the neural mechanisms underlying the ontogeny of learning is tractable using eyeblink conditioning because the necessary neural circuitry (cerebellum and interconnected brainstem nuclei) underlying the acquisition and retention of the conditioned response (CR) has been identified in adult organisms. Moreover, the cerebellum exhibits substantial postnatal anatomical and physiological maturation in rats. The eyeblink CR emerges developmentally between postnatal day (PND) 17 and 24 in rats. A series of experiments found that the ontogenetic emergence of eyeblink conditioning is related to the development of associative learning and not related to changes in performance. More recent studies have examined the relationship between the development of eyeblink conditioning and the physiological maturation of the cerebellum, a brain structure that is necessary for eyeblink conditioning in adult organisms. Disrupting cerebellar development with lesions or antimitotic treatments impairs the ontogeny of eyeblink conditioning. Studies of the development of physiological processes within the cerebellum have revealed striking ontogenetic changes in stimulus-elicited and learning-related neuronal activity. Neurons in the interpositus nucleus and Purkinje cells in the cortex exhibit developmental increases in neuronal discharges following the unconditioned stimulus (US) and in neuronal discharges that model the amplitude and time-course of the eyeblink CR. The developmental changes in CR-related neuronal activity in the cerebellum suggest that the ontogeny of eyeblink conditioning depends on the development of mechanisms that establish cerebellar plasticity. Learning and the induction of neural plasticity depend on the magnitude of the US input to the cerebellum. The role of developmental changes in the efficacy of the US pathway has been investigated by monitoring neuronal activity in the inferior olive and with stimulation techniques. The results of these experiments indicate that the development of the conditioned eyeblink response may depend on dynamic interactions between multiple developmental processes within the eyeblink neural circuitry.  相似文献   

14.
Delay eyeblink conditioning is established by paired presentations of a conditioned stimulus (CS) such as a tone or light, and an unconditioned stimulus (US) that elicits the blink reflex. Conditioned stimulus information is projected from the basilar pontine nuclei to the cerebellar interpositus nucleus and cortex. The cerebellar cortex, particularly the molecular layer, contains a high density of cannabinoid receptors (CB1R). The CB1Rs are located on the axon terminals of parallel fibers, stellate cells, and basket cells where they inhibit neurotransmitter release. The present study examined the effects of a CB1R agonist WIN55,212-2 and antagonist SR141716A on the acquisition of delay eyeblink conditioning in rats. Rats were given subcutaneous administration of 1, 2, or 3 mg/kg of WIN55,212-2 or 1, 3, or 5 mg/kg of SR141716A before each day of acquisition training (10 sessions). Dose-dependent impairments in acquisition were found for WIN55,212-2 and SR141716A, with no effects on spontaneous or nonassociative blinking. However, the magnitude of impairment was greater for WIN55,212-2 than SR141716A. Dose-dependent impairments in conditioned blink response (CR) amplitude and timing were found with WIN55,212-2 but not with SR141716A. The findings support the hypothesis that CB1Rs in the cerebellar cortex play an important role in plasticity mechanisms underlying eyeblink conditioning.  相似文献   

15.
Autism is unique among other disorders in that acquisition of conditioned eyeblink responses is enhanced in children, occurring in a fraction of the trials required for control participants. The timing of learned responses is, however, atypical. Two animal models of autism display a similar phenotype. Researchers have hypothesized that these differences in conditioning reflect cerebellar abnormalities. The present study used computer simulations of the cerebellar cortex, including inhibition by the molecular layer interneurons, to more closely examine whether atypical cerebellar processing can account for faster conditioning in individuals with autism. In particular, the effects of inhibitory levels on delay eyeblink conditioning were simulated, as were the effects of learning-related synaptic changes at either parallel fibers or ascending branch synapses from granule cells to Purkinje cells. Results from these simulations predict that whether molecular layer inhibition results in an enhancement or an impairment of acquisition, or changes in timing, may depend on (1) the sources of inhibition, (2) the levels of inhibition, and (3) the locations of learning-related changes (parallel vs. ascending branch synapses). Overall, the simulations predict that a disruption in the balance or an overall increase of inhibition within the cerebellar cortex may contribute to atypical eyeblink conditioning in children with autism and in animal models of autism.  相似文献   

16.
Previous studies using rabbits and ferrets found that electrical stimulation of the pontine nuclei or middle cerebellar peduncle could serve as a conditioned stimulus (CS) in eyeblink conditioning (Bao, Chen, & Thompson, 2000; Hesslow, Svensson, & Ivarsson, 1999; Steinmetz, 1990; Steinmetz, Lavond, & Thompson, 1985; 1989; Steinmetz et al., 1986; Tracy, Thompson, Krupa, & Thompson, 1998). The current study used electrical stimulation of the pontine nuclei as a CS to establish eyeblink conditioning in rats. The goals of this study were to develop a method for directly activating the CS pathway in rodents and to compare the neural circuitry underlying eyeblink conditioning in different mammalian species. Rats were given electrical stimulation through a bipolar electrode implanted in the pontine nuclei paired with a periorbital shock unconditioned stimulus (US). Paired training was followed by extinction training. A subset of rats was given a test session of paired training after receiving an infusion of muscimol into the anterior interpositus nucleus. Rats given paired presentations of the stimulation CS and US developed CRs rapidly and showed extinction. Muscimol infusion prior to the test session resulted in a reversible loss of the eyeblink CR. The results demonstrate that electrical stimulation of the pontine nuclei can be used as a CS in rodents and that the CS pathway is similar in rats, rabbits, and ferrets. In addition, the loss of CRs following muscimol inactivation shows that the conditioning produced with pontine stimulation depends on cerebellar mechanisms.  相似文献   

17.
In rodents stress impairs delay as well as trace eyelid conditioning in females, but enhances it in males. The present study tested the effects of acute psychosocial stress exposure on classical delay eyeblink conditioning in healthy men and women. In a between subject design, participants were exposed to psychosocial stress using the Trier Social Stress Test (TSST) or a control condition which was followed by a delay eyeblink classical conditioning procedure. Stress exposure led to a significant increase in salivary cortisol and impaired acquisition of conditioned eyeblink responses (CRs). This was evident by a later first CR and an overall lower CR rate of the stress group. The stress-induced acquisition impairment was observed in both women and men. Subjects failing to show a stress-induced cortisol increase (cortisol non-responder) were not impaired in acquisition. Our findings indicate that acute stress, possibly via activation of the hypothalamus–pituitary–adrenal (HPA) axis, reduces the ability to acquire a simple conditioned motor response in humans.  相似文献   

18.
In delay eyeblink conditioning, the CS overlaps with the US and only a brainstem-cerebellar circuit is necessary for learning. In trace eyeblink conditioning, the CS ends before the US is delivered and several forebrain structures, including the hippocampus, are required for learning, in addition to a brainstem-cerebellar circuit. The interstimulus interval (ISI) between CS onset and US onset is perhaps the most important factor in classical conditioning, but studies comparing delay and trace conditioning have typically not matched these procedures in this crucial factor, so it is often difficult to determine whether results are due to differences between delay and trace or to differences in ISI. In the current study, we employed a 580-ms CS-US interval for both delay and trace conditioning and compared hippocampal CA1 activity and cerebellar interpositus nucleus activity in order to determine whether a unique signature of trace conditioning exists in patterns of single-unit activity in either structure. Long-Evans rats were chronically implanted in either CA1 or interpositus with microwire electrodes and underwent either delay eyeblink conditioning, or trace eyeblink conditioning with a 300-ms trace period between CS offset and US onset. On trials with a CR in delay conditioning, CA1 pyramidal cells showed increases in activation (relative to a pre-CS baseline) during the CS-US period in sessions 1-4 that was attenuated by sessions 5-6. In contrast, on trials with a CR in trace conditioning, CA1 pyramidal cells did not show increases in activation during the CS-US period until sessions 5-6. In sessions 5-6, increases in activation were present only to the CS and not during the trace period. For rats with interpositus electrodes, activation of interpositus neurons on CR trials was present in all sessions in both delay and trace conditioning. However, activation was greater in trace compared to delay conditioning in the first half of the CS-US interval (during the trace CS) during early sessions of conditioning and, in later sessions of conditioning, activation was greater in the second half of the CS-US interval (during the trace interval). These results suggest that the pattern of hippocampal activation that differentiates trace from delay eyeblink conditioning is a slow buildup of activation to the CS, possibly representing encoding of CS duration or discrimination of the CS from the background context. Interpositus nucleus neurons show strong modeling of the eyeblink CR regardless of paradigm but show a changing pattern across conditioning that may be due to the necessary contributions of forebrain processing to trace conditioning.  相似文献   

19.
We examined the importance of awareness for eyeblink conditioning by directly comparing singlecue delay eyeblink conditioning and single-cue trace eyeblink conditioning. During single-cue delay conditioning, participants who became aware of the stimulus contingencies early in the conditioning session conditioned no better than those who became aware later in the session or did not become aware. Thus, the level of awareness was unrelated to the overall level of conditioning across the session. In contrast, awareness of the stimulus contingencies early in the session predicted the success of single-cue trace conditioning. These data, together with earlier findings, show that awareness is irrelevant to single-cue delay eyeblink conditioning but is critical for single-cue trace eyeblink conditioning. The findings from the present study are related to previous findings for differential (CS+ and CS) eyeblink conditioning and awareness.  相似文献   

20.
The rabbit nictitating membrane (NM) response underwent successive stages of acquisition and extinction training in both delay (Experiment 1) and trace (Experiment 2) classical conditioning. In both cases, successive acquisitions became progressively faster, although the largest, most reliable acceleration occurred between the first and second acquisition. Successive extinctions were similar in rate. The results challenge contextual control theories of extinction but are consistent with attentional and layered-network models. The results are discussed with respect to their implications for the interaction between cerebellar and forebrain pathways for eyeblink conditioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号