首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylphenidate (MPH, Ritalin) is a norepinephrine and dopamine transporter blocker that is widely used in humans for treatment of attention deficit disorder and narcolepsy. Although there is some evidence that targeted microinjections of MPH may enhance fear acquisition, little is known about the effect of MPH on fear extinction. Here, we show that MPH, administered before or immediately following extinction of contextual fear, will enhance extinction retention in C57BL/6 mice. Animals that received MPH (2.5-10 mg/kg) before an extinction session showed decreased freezing response during extinction, and the effect of the 10 mg/kg dose on freezing persisted to the next day. When MPH (2.5-40 mg/kg) was administered immediately following an extinction session, mice that received MPH showed dose-dependent decreases in freezing during subsequent tests. MPH administered immediately after a 3-min extinction session or 4 h following the first extinction session did not cause significant differences in freezing. Together, these findings demonstrate that MPH can enhance extinction of fear and that this effect is sensitive to dose, time of injection, and duration of the extinction session. Because MPH is widely used in clinical treatments, these experiments suggest that the drug could be used in combination with behavioral therapies for patients with fear disorders.  相似文献   

2.
Facilitation of memory extinction by manipulation of the endocannabinoid (eCB) system has been recently studied in several paradigms. Our previous results pointed to facilitation of contextual fear memory extinction by a low dose of a cannabinoid agonist, with a suggestion of short-term effects. The aim of the present study was to further investigate the effects of cannabinoid drugs in the short- and long-term extinction of conditioned fear using an extended extinction protocol. Male Wistar rats were placed in a conditioning chamber and after 3 min received a footshock (1.5 mA, 1 s). On the next day, they received i.p. drug treatment (WIN55212-2 0.25 mg/kg, AM404 10 mg/kg, SR141716 A 1 mg/kg) and were re-exposed to the conditioning chamber for 30 min (extinction training). No-Extinction groups received the same drug treatment, but were exposed for 3 min to the conditioning chamber. A drug-free test of contextual memory (3 min) was performed 7 days later. The cannabinoid agonist WI55212-2 and the inhibitor of eCB metabolism/uptake AM404 facilitated short-term extinction. In addition, long-term effects induced by treatments with WIN55212 and AM404 were completely divergent to those of SR141716A treatment. The present results confirm and extend previous findings showing that the eCB system modulates short-term fear memory extinction with long-lasting consequences.  相似文献   

3.
Three experiments with Wistar rats searched for a sex difference in contextual control over the expression of latent inhibition and extinction. Experiment 1 used a latent inhibition procedure; Experiments 2 and 3 employed an extinction preparation. All experiments used a shock as the unconditioned stimulus, a tone as the conditioned stimulus, and suppression of food magazine visits as the measure of conditioned responding to the tone. Each experiment revealed a reliable context effect on conditioned responding to the tone; after conditioning in a separate context, conditioned responding in the former latent inhibition or extinction context was attenuated relative to conditioned responding in a control context. There was no sex difference in the magnitude of this effect. These results are discussed in the framework of sex differences in the hippocampus and of the putative role of this structure in various instances of contextual learning.  相似文献   

4.
Humans with post-traumatic stress disorder (PTSD) are deficient at extinguishing conditioned fear responses. A study of identical twins concluded that this extinction deficit does not predate trauma but develops as a result of trauma. The present study tested whether the Lewis rat model of PTSD reproduces these features of the human syndrome. Lewis rats were subjected to classical auditory fear conditioning before or after exposure to a predatory threat that mimics a type of traumatic stress that leads to PTSD in humans. Exploratory behavior on the elevated plus maze 1 wk after predatory threat exposure was used to distinguish resilient vs. PTSD-like rats. Properties of extinction varied depending on whether fear conditioning and extinction occurred before or after predatory threat. When fear conditioning was carried out after predatory threat, PTSD-like rats showed a marked extinction deficit compared with resilient rats. In contrast, no differences were seen between resilient and PTSD-like rats when fear conditioning and extinction occurred prior to predatory threat. These findings in Lewis rats closely match the results seen in humans with PTSD, thereby suggesting that studies comparing neuronal interactions in resilient vs. at-risk Lewis rats might shed light on the causes and pathophysiology of human PTSD.Following a severe traumatic event, some individuals manifest a syndrome, known as post-traumatic stress disorder (PTSD), characterized by repeated painful recollection of the trauma, avoidance of trauma reminders, intrusive thoughts, startle, hyperarousal, and disturbed sleep. Lifetime prevalence of PTSD ranges from 1.4% to 11.2% in representative samples (Afifi et al. 2010). Review of heritability studies indicate that there is a significant genetic component to PTSD (Nugent et al. 2008) as shared genes explain approximately 25%–38% of variability in PTSD symptom clusters and total symptoms (Afifi et al. 2010). Moreover, PTSD heritability coincides with that of other psychiatric conditions such as generalized anxiety, panic disorder, and depression (Chantarujikapong et al. 2001; Fu et al. 2007), suggesting that these disorders gain expression through common biological pathways.Although our understanding of PTSD has improved recently, we still have a limited grasp of the factors that predispose some to be at risk for PTSD, as well as those contributing to PTSD expression following trauma. In part, this situation results from the ethical limitations associated with human studies. For example, humans cannot be randomly assigned to trauma, and, importantly, the invasive techniques required to study the pathophysiology of PTSD can be used only in animals. Thus, a promising approach toward understanding the underlying pathophysiology of PTSD would be to study the disease in a valid animal model of the human syndrome.Fortunately, much work has already been performed to define an animal model of PTSD that reproduces the salient features of the human syndrome (see Adamec et al. 2006; Cohen et al. 2006a; Siegmund and Wotjak 2006). The most promising research has focused on the impact of exposing rodents to species-relevant threatening stimuli that mimic the kind of life-and-death circumstances that precipitates PTSD in humans. Indeed, rodents exposed to predators or their odor develop long-lasting (3 wk or more) manifestations of anxiety as seen in a variety of behavioral assays including the elevated plus maze (EPM), social interaction test, and acoustic startle (Adamec and Shallow 1993; Blanchard et al. 2003; Adamec et al. 2006). The inherent strength of this species-relevant stimulus was demonstrated in studies where predator odor served as an unconditioned stimulus to support cued or contextual fear conditioning (Blanchard et al. 2001; McGregor et al. 2002). As is the case with human PTSD, differential vulnerability to predatory threat was also observed in rodents. In one study, for instance, the propensity of different strains of rats to develop extreme behavioral manifestations of anxiety (EBMAs) as a result of predatory threat has been characterized, revealing that a much higher proportion (50%) of Lewis rats (an inbred strain) develops EBMAs as a result of an intense predatory threat compared with 10% of Fisher rats and 20% of Sprague–Dawley rats (Cohen et al. 2006b).Although these results are promising, it remains unclear whether Lewis rats also exhibit traits that parallel the pathophysiology of human PTSD. One such factor, thought to play a particularly critical role in the persistence of PTSD, is a compromised ability to extinguish fear memories (for review, see Quirk and Mueller 2008). Two main lines of evidence support this notion. First, in functional imaging studies, the brain structures that normally support fear expression and extinction (for review, see Pape and Pare 2010) show abnormal activity patterns in PTSD (Rauch et al. 2006; Shin et al. 2006; Bremner et al. 2008; Milad et al. 2009). Second, several studies have reported that individuals with PTSD are deficient at extinguishing classically conditioned fear responses (Orr et al. 2000; Peri et al. 2000; Blechert et al. 2007; Milad et al. 2008, 2009). Of particular interest, a study of identical twins discordant for trauma exposure has revealed that this extinction deficit was not a pre-existing condition but developed as a result of trauma (Milad et al. 2008). Given the possibility that an inability to extinguish fear might contribute to the maintenance of PTSD, we therefore tested whether Lewis rats reproduced the properties of extinction seen in human PTSD.  相似文献   

5.
Epigenetic regulation of chromatin structure is an essential molecular mechanism that contributes to the formation of synaptic plasticity and long-term memory (LTM). An important regulatory process of chromatin structure is acetylation and deacetylation of histone proteins. Inhibition of histone deacetylase (HDAC) increases acetylation of histone proteins and facilitate learning and memory. Nitric oxide (NO) signaling pathway has a role in synaptic plasticity, LTM and regulation of histone acetylation. We have previously shown that NO signaling pathway is required for contextual fear conditioning. The present study investigated the effects of systemic administration of the HDAC inhibitor sodium butyrate (NaB) on fear conditioning in neuronal nitric oxide synthase (nNOS) knockout (KO) and wild type (WT) mice. The effect of single administration of NaB on total H3 and H4 histone acetylation in hippocampus and amygdala was also investigated. A single administration of NaB prior to fear conditioning (a) rescued contextual fear conditioning of nNOS KO mice and (b) had long-term (weeks) facilitatory effect on the extinction of cued fear memory of WT mice. The facilitatory effect of NaB on extinction of cued fear memory of WT mice was confirmed in a study whereupon NaB was administered during extinction. Results suggest that (a) the rescue of contextual fear conditioning in nNOS KO mice is associated with NaB-induced increase in H3 histone acetylation and (b) the accelerated extinction of cued fear memory in WT mice is associated with NaB-induced increase in H4 histone acetylation. Hence, a single administration of HDAC inhibitor may rescue NO-dependent cognitive deficits and afford a long-term accelerating effect on extinction of fear memory of WT mice.  相似文献   

6.
It is unclear whether protein phosphatases, which counteract the actions of protein kinases, play a beneficial role in the formation and extinction of previously acquired fear memories. In this study, we investigated the role of the calcium/calmodulin dependent phosphatase 2B, also known as calcineurin (CaN) in the formation of contextual fear memory and extinction of previously acquired contextual fear. We used a temporally regulated transgenic approach, that allowed us to selectively inhibit neuronal CaN activity in the forebrain either during conditioning or only during extinction training leaving the conditioning undisturbed. Reducing CaN activity through the expression of a CaN inhibitor facilitated contextual fear conditioning, while it impaired the extinction of previously formed contextual fear memory. These findings give the first genetic evidence that neuronal CaN plays an opposite role in the formation of contextual fear memories and the extinction of previously formed contextual fear memories.  相似文献   

7.
8.
Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and the phosphatase calcineurin as potential molecular substrates of extinction behavior. To test the involvement of these kinase and phosphatase activities in CB1-dependent extinction of conditioned fear behavior, conditioned CB1-deficient mice (CB1(-/-)) and wild-type littermates (CB1(+/+)) were sacrificed 30 min after recall of fear memory, and activation of ERKs, AKT, and calcineurin was examined by Western blot analysis in different brain regions. As compared with CB1(+/+), the nonreinforced tone presentation 24 h after auditory-cued fear conditioning led to lower levels of phosphorylated ERKs and/or calcineurin in the basolateral amygdala complex, ventromedial prefrontal cortex, dorsal hippocampus, and ventral hippocampus of CB1(-/-). In contrast, higher levels of phosphorylated p44 ERK and calcineurin were observed in the central nucleus of the amygdala of CB1(-/-). Phosphorylation of AKT was more pronounced in the basolateral amygdala complex and the dorsal hippocampus of CB1(-/-). We propose that the endogenous cannabinoid system modulates extinction of aversive memories, at least in part via regulation of the activity of kinases and phosphatases in a brain structure-dependent manner.  相似文献   

9.
Fear responses can be eliminated through extinction, a procedure involving the presentation of fear-eliciting stimuli without aversive outcomes. Extinction is believed to be mediated by new inhibitory learning that acts to suppress fear expression without erasing the original memory trace. This hypothesis is supported mainly by behavioral data demonstrating that fear can recover following extinction. However, a recent report by Myers and coworkers suggests that extinction conducted immediately after fear learning may erase or prevent the consolidation of the fear memory trace. Since extinction is a major component of nearly all behavioral therapies for human fear disorders, this finding supports the notion that therapeutic intervention beginning very soon after a traumatic event will be more efficacious. Given the importance of this issue, and the controversy regarding immediate versus delayed therapeutic interventions, we examined two fear recovery phenomena in both rats and humans: spontaneous recovery (SR) and reinstatement. We found evidence for SR and reinstatement in both rats and humans even when extinction was conducted immediately after fear learning. Thus, our data do not support the hypothesis that immediate extinction erases the original memory trace, nor do they suggest that a close temporal proximity of therapeutic intervention to the traumatic event might be advantageous.  相似文献   

10.
The association of five footshocks with a neutral odor is able to establish an olfactory fear conditioning in rats. The present study sought to investigate whether the systemic administration of pentylenetetrazole (PTZ; 3.75–15 mg/kg) would turn the coffee odor in a conditioned stimulus in the fear conditioning paradigm. The results showed that rats started to display risk assessment and avoidance after PTZ (15 mg/kg)–coffee odor pairing. When three mild footshocks (0.4 mA for 2 s) were delivered during this pairing, the conditioned response exhibited was greater than before. In both cases, however, pretreatment with the benzodiazepine midazolam (MDZ. 0.5 mg/kg i.p.) fully counteracted the expression of these defensive behaviors. Moreover, after being paired with 15 mg/kg of PTZ alone or combined with footshocks, the coffee odor was able to promote a new fear conditioning related to the context where it was re-exposed. The present findings point out the usefulness of PTZ as an unconditioned stimulus to promote fear conditioning to olfactory and contextual cues in rats.  相似文献   

11.
12.
Two studies examined whether nonreinforcement of a stimulus in multiple contexts, instead of a single context, would decrease renewal of conditioned fear in rats (as assessed by conditioned suppression of lever pressing). In Experiment 1, renewal was measured after 36 nonreinforced CS trials delivered during six extinction sessions in a single context or two extinction sessions in each of three different contexts. The number of extinction contexts did not have an effect on renewal. In Experiment 2, groups received either 36 or 144 nonreinforced CS trials during six or twenty-four extinction sessions in a single context or three different contexts. Again, renewal was not influenced by the number of extinction contexts when only 36 trials were given. However, when 144 trials were used, renewal was completely eliminated when extinction was divided between 3 contexts, but was not weakened when the sessions took place in a single context. The results suggest that the use of multiple treatment settings in exposure-based therapies is only likely to reduce relapse if a sufficient number of sessions are provided in each of the treatment settings.  相似文献   

13.
Both genetic and pharmacological studies demonstrated that contextual fear conditioning is critically regulated by cyclic AMP-dependent protein kinase (PKA). Since PKA is a broad range protein kinase, a mechanism for confining its activity is required. It has been shown that intracellular spatial compartmentalization of PKA signaling is mediated by A-kinase anchoring proteins (AKAPs). Here, we investigated the role of PKA anchoring to AKAPs in different stages of the memory process (acquisition, consolidation, retrieval and extinction) using contextual fear conditioning, a hippocampus-dependent learning task. Mice were injected intracerebroventricularly or intrahippocampally with the membrane permeable PKA anchoring disrupting peptides St-Ht31 or St-superAKAP-IS at different time points during the memory process. Blocking PKA anchoring to AKAPs resulted in an impairment of fear memory consolidation. Moreover, disrupted PKA anchoring promoted contextual fear extinction in the mouse hippocampus. We conclude that the temporal and spatial compartmentalization of hippocampal PKA signaling pathways, as achieved by anchoring of PKA to AKAPs, is specifically instrumental in long-term contextual fear memory consolidation and extinction, but not in acquisition and retrieval.  相似文献   

14.
Previous research has shown that an acute, post-training injection of D-cycloserine (DCS) facilitates extinction of conditioned fear in rats; however, the effects of multiple exposures to DCS in this situation are not known. In Experiment 1, rats were conditioned (light-shock pairings) and 24 h later given six extinction (light-alone) trials followed by an injection of DCS (15 mg/kg) or saline. The next day, all rats were tested for light-elicited freezing. In Experiment 2, the effect of DCS on extinction was tested in the same manner, except that rats were pre-exposed to DCS (0, 1, or 5 injections) just prior to conditioning. In Experiment 3, rats received five pre-exposures of DCS but conditioning occurred either 2 or 28 days after the last pre-exposure. The results showed that DCS facilitated extinction of conditioned freezing to the light CS when no drug pre-exposure had occurred, but pre-exposure to DCS just prior to conditioning disrupted the facilitation of extinction effect. When 28 days were interposed between pre-exposure and conditioning, the facilitatory effects of DCS on extinction were restored. These findings suggest that DCS has significant clinical value but that behavioral desensitization may occur with multiple exposures; however, desensitization is not permanent and is reduced by the passage of time.  相似文献   

15.
16.
Protection from extinction in human fear conditioning   总被引:3,自引:0,他引:3  
Two experiments examined the ability of an added stimulus to interfere with extinction of a target excitatory fear stimulus (a predictor of shock) in human autonomic conditioning. Both experiments demonstrated disruption of extinction when the added stimulus was inhibitory (a predictor of no shock, or safety signal). Subjects showed a return of fear when the target stimulus was tested alone, on both self-reported shock expectancy and skin conductance measures. The second experiment also demonstrated disruption of extinction when the added stimulus was excitatory. This results suggests that protection from extinction may occur even when the added stimulus is not inhibitory. Additional factors that may contribute to protection from extinction include context-specificity, occasion-setting and external inhibition. The results highlight the role that concurrent stimuli play in extinction, and emphasise the need to keep concurrent stimuli as similar as possible to the desired transfer context in practical applications of extinction such as exposure therapy for anxiety.  相似文献   

17.
Disruptions of fear extinction-related potentiation of synaptic efficacy in the connection between the hippocampus (HPC) and the medial prefrontal cortex (mPFC) have been shown to impair the recall of extinction memory. This study was undertaken to examine if chronic mild stress (CMS), which is known to alter induction of HPC–mPFC long-term potentiation, would also interfere with both extinction-related HPC–mPFC potentiation and extinction memory. Following fear conditioning (5 tone-shock pairings), rats were submitted to fear extinction (20 tone-alone presentations), which produced an increase in the amplitude of HPC–mPFC field potentials. HPC low-frequency stimulation (LFS), applied immediately after training, suppressed these changes and induced fear return during the retention test (5 tone-alone presentations). CMS, delivered before fear conditioning, did not interfere with fear extinction but blocked the development of extinction-related potentiation in the HPC–mPFC pathway and impaired the recall of extinction. These findings suggest that HPC LFS may provoke metaplastic changes in HPC outputs that may mimic alterations associated with a history of chronic stress.  相似文献   

18.
Enhanced fear learning occurs subsequent to traumatic or stressful events and is a persistent challenge to the treatment of post-traumatic stress disorder (PTSD). Facilitation of learning produced by prior stress can elicit an exaggerated fear response to a minimally aversive event or stimulus. Stress-enhanced fear learning (SEFL) is a rat model of PTSD; rats previously exposed to the SEFL 15 electrical shocks procedure exhibit several behavioral responses similar to those seen in patients with PTSD. However, past reports found that SEFL is not mitigated by extinction (a model of exposure therapy) when the spaced extinction began 24?h after stress. Recent studies found that extinction from 10?min to 1?h subsequent to fear conditioning "erased" learning, whereas later extinction, occurring from 24 to 72?h after conditioning did not. Other studies indicate that massed extinction is more effective than spaced procedures. Therefore, we examined the time-dependent nature of extinction on the stress-induced enhancement of fear learning using a massed trial's procedure. Experimental rats received 15 foot shocks and were given either no extinction or massed extinction 10?min or 72?h later. Our present data indicate that SEFL, following traumatic stress, is resistant to immediate massed extinction. Experimental rats showed exaggerated new fear learning regardless of when extinction training occurred. Thus, post-traumatic reactivity such as SEFL does not seem responsive to extinction treatments.  相似文献   

19.
Extinction of auditory fear conditioning is thought to form a new memory. We previously found that rats with vmPFC lesions could extinguish fear to the tone within a session, but showed no recall of extinction 24 h later. One interpretation is that the vmPFC is the sole storage site of extinction memory. However, it is also possible that lesioned rats were unable to retrieve extinction memory stored in other structures. To determine if a latent extinction memory could be retrieved with additional training, we repeated the experiment but added an additional 5 d of extinction reminder trials. Replicating our previous findings, vmPFC-lesioned rats extinguished normally on day 1, but showed no recall of extinction on day 2. Over the next 5 d, however, lesioned rats showed significant savings in their rate of re-extinction. Thus, the vmPFC is not the only site where extinction memory is stored. Nevertheless, lesioned rats receiving only two extinction trials per day required twice as many days to initiate extinction as controls. Although recall of extinction is possible without the vmPFC, it is significantly delayed. We suggest that the vmPFC accelerates extinction by permitting access to recently learned extinction trials, thereby maximizing behavioral flexibility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号