首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retrograde amnesia following disruptions of hippocampal function is often temporally graded, with recent memories being more impaired. Evidence supports the existence of one or more neocortical long-term memory storage/retrieval site(s). Neurotoxic lesions of the medial prefrontal cortex (mPFC) or the dorsal hippocampus (DH) were made 1 day or 200 days following trace fear conditioning. Recently encoded trace fear memories were most disrupted by DH lesions, while remotely encoded trace and contextual memories were most disrupted by mPFC lesions. These data strongly support the consolidation theory of hippocampus function and implicate the mPFC as a site of long-term memory storage/retrieval.  相似文献   

2.
We evaluated the role of the medial prefrontal cortex (mPFC) in the elaboration of egocentric navigation strategies in a water maze (WM). Lesions of mPFC cell bodies was achieved in 21 rats using bilateral injections of ibotenic acid (IA); 13 control rats were injected with saline. After 17 days, rats had to learn an allocentric (using external cues: 10 lesioned, 7 saline rats) or an egocentric WM (using internal/kinetic cues: 10 lesioned, 6 saline rats) over six trials in a same session. The initial trajectory on the sixth trial was used as an index of the elaboration of a navigation strategy. In the egocentric test, lesioned rats were more rarely located in the target quadrant than control rats. No differences were found between lesioned and control rats in the allocentric test. These results show that lesions of the mPFC impairs the capacity to elaborate an egocentric navigation strategy.  相似文献   

3.
Cholinergic modulation of the hippocampus during encoding and retrieval   总被引:4,自引:0,他引:4  
The present experiments were aimed at determining whether acetylcholine (ACh) plays a role in encoding and retrieval of spatial information using a modified Hebb-Williams maze. In addition, the present experiments tested two computational models of hippocampal function during encoding and retrieval using a maze sensitive to hippocampal disruption. Thirty male, Long-Evans rats served as subjects. Chronic cannulae were implanted bilaterally into the CA3 (n=26) and CA1 (n=5) subregions of the hippocampus. Rats were tested using a modified Hebb-Williams maze. In the first experiment, rats were injected with either saline or scopolamine hydrobromide 10 min before testing for each day. The number of errors made per day per group was used as the measure of learning. Encoding was assessed by the average number of errors made on the first five trials of Day 1 compared to the last five trials of Day 1, whereas the average number of errors made on the first five trials of Day 2 compared to the last five trials of Day I was used to assess retrieval. No deficit was found for the saline group. The scopolamine group showed a deficit in encoding, but not retrieval. In the second experiment, rats were injected with either saline or physostigmine 10 min before testing each day. In contrast to the scopolamine groups, the physostigmine group showed a deficit in retrieval, but not encoding. To test whether the retrieval deficit was due to a disruption in storage or gaining access to the information two groups of rats received either saline on Day 1 and physostigmine on Day 2 or physostigmine on Day 1 and saline on Day 2. In addition, one group received physostigmine immediately after testing on Day 1. Data indicate that physostigmine causes a disruption of retrieval by means of a disruption in consolidation process. In conclusion, the cholinergic antagonist, scopolamine, disrupts encoding in both CA3 and CA1 subregions of the hippocampus. Furthermore, the cholinesterase inhibitor, physostigmine, boosts ACh action during a time when cholinergic levels need to decline for proper consolidation.  相似文献   

4.
Recent data showed that neonatal ventral hippocampus (VH) lesions, an approach used to model schizophrenia symptoms in rodents, produce premature deficits of working memory believed to be associated with early medial prefrontal cortex (mPFC) maldevelopment. This experiment expands the investigation of mPFC integrity in juvenile rats with neonatal VH lesions by assessing behavioral flexibility and dendritic spine density. Sixteen Sprague-Dawley male pups received bilateral microinjections of ibotenic acid in the VH or SHAM surgery on postnatal day (PND) 6. On PND 29 and 30, rats were subjected to a spatial shift task in a cross-maze; an attentional set-shifting task was then administered on two consecutive days, between PND 33 and PND 35. Rats were sacrificed at PND 36 and dendritic spine density in the mPFC was assessed using Golgi-Cox staining procedure. Results revealed impaired extra-dimensional shift in VH-lesioned rats and inconsistent reversal discrimination outcomes. Although lesioned animals displayed intact performance in the spatial shift, rates of perseverative responses were higher than normal in this task. Neonatal VH damage resulted in lower dendritic spine density in the mPFC than measured in control brains; however, no significant correlation was found between this outcome and behavioral data. Juvenile morphological and cognitive perturbations are consistent with the early emergence of mPFC anomalies following neonatal VH lesions. Results are discussed in relation with potential common mechanisms linking pre- and post-pubertal onsets of behavioral dysfunction.  相似文献   

5.
王琼  王玮文  李曼  杜伟  邵枫 《心理学报》2016,48(5):509-517
脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)广泛参与了个体学习和记忆等认知功能, 通过与其酪氨酸激酶受体(tyrosine kinase, TrkB)特异性结合, 实现其多种神经生化功能。本研究观察了TrkB受体阻断剂ANA-12的慢性内侧前额叶皮质(medial prefrontal cortex, mPFC)注射对大鼠旷场行为、Morris水迷宫空间学习和逆反学习的影响。研究结果表明, mPFC的慢性BDNF阻断显著降低了大鼠在逆反学习测试中的逃离潜伏期和运动距离即增强了大鼠的逆反学习能力, 但不影响其旷场行为和水迷宫空间学习能力。同时, 慢性阻断mPFC-TrkB受体也并未导致大鼠海马BDNF蛋白含量的显著改变。这些结果提示, 对于大鼠的Morris水迷宫空间学习和逆反学习, mPFC-BDNF主要在逆反学习调节中发挥重要作用。这对于进一步探索海马和mPFC在调节个体认知功能中各自的作用及其潜在的相互关系提供了有力的证据和支持。  相似文献   

6.
Age-related decline in allocentric (viewer-independent) spatial memory is seen across species. We employed a virtual reality analogue of the Morris Water Maze to study the effect of healthy ageing on neural activity during allocentric spatial memory using functional magnetic resonance imaging. Voxel-based morphometry was used to ascertain hippocampal volumetric integrity. A widespread neural network comprising frontal, parietal, occipital, thalamic, and cerebellar regions was activated in young and older adults, but only young adults significantly activated bilateral hippocampus and left parahippocampus, as well as right frontal pole and dorso-lateral prefrontal cortex (DLPFC) during encoding and right DLPC during retrieval. Hippocampal grey matter volume was unchanged in older adults; however, prefrontal and parahippocampal functional attenuation was accompanied by volumetric reduction. We conclude that the decline in allocentric spatial memory with age is associated with attenuated hippocampal function, as well as compromised function and structure of prefrontal and parahippocampal regions.  相似文献   

7.
Functional magnetic resonance imaging (fMRI) was used to compare directly episodic encoding and retrieval. During encoding, subjects studied visually presented words and reported via keypress whether each word represented a pleasant or unpleasant concept (intentional, deep encoding). During the retrieval phase, subjects indicated (via keypress) whether visually presented words had previously been studied. No reliable differences were found during the recognition phase for words that had been previously studied and those that had not been studied. Areas preferentially active during encoding (relative to retrieval) included left superior frontal cortex, medial frontal cortex, left superior temporal cortex, posterior cingulate, left parahippocampal gyrus, and left inferior frontal gyrus. Regions more active in retrieval than encoding included bilateral inferior parietal cortex, bilateral precuneus, right frontal polar cortex, right dorsolateral prefrontal cortex, and right inferior frontal/insular cortex.  相似文献   

8.
Functional magnetic resonance imaging (fMRI) was used to compare directly episodic encoding and retrieval. During encoding, subjects studied visually presented words and reported via keypress whether each word represented a pleasant or unpleasant concept (intentional, deep encoding). During the retrieval phase, subjects indicated (via keypress) whether visually presented words had previously been studied. No reliable differences were found during the recognition phase for words that had been previously studied and those that had not been studied. Areas preferentially active during encoding (relative to retrieval) included left superior frontal cortex, medial frontal cortex, left superior temporal cortex, posterior cingulate, left parahippocampal gyrus, and left inferior frontal gyrus. Regions more active in retrieval than encoding included bilateral inferior parietal cortex, bilateral precuneus, right frontal polar cortex, right dorsolateral prefrontal cortex, and right inferior frontal/insular cortex.  相似文献   

9.
Although the roles of both the hippocampus and the medial prefrontal cortex (mPFC) have been suggested in a spatial paired-associate memory task, both areas were investigated separately in prior studies. The current study investigated the relative contributions of the hippocampus and mPFC to spatial paired-associate learning within a single behavioral paradigm. In a novel behavioral task, a pair of different objects appeared repeatedly across trials, but in different arms in a radial maze, and different rules were associated with those arms for reward. Specifically, in an "object-in-place" arm, the rat was required to choose a particular object associated with the arm. In a "location-in-place" arm, the animal was required to choose a certain within-arm location (ignoring the object occupying the location). Compared to normal animals, rats with ibotenic acid-based lesions in the hippocampus showed an irrecoverable impairment in performance in both object-in-place and location-in-place arms. When the mPFC was inactivated by muscimol (GABA(A) receptor agonist) in the normal animals with intact hippocampi, they showed the same severe impairment as seen in the hippocampal lesioned rats only in object-in-place arms. The results confirm that the hippocampus is necessary for a biconditional paired-associate task when space is a critical component. The mPFC, however, is more selectively involved in the object-place paired-associate task than in the location-place paired-associate task. The current task powerfully demonstrates an experimental situation in which both the hippocampus and mPFC are required and may serve as a useful paradigm for investigating the neural mechanisms of object-place association.  相似文献   

10.
Several lines of evidence in humans and experimental animals suggest that the hippocampus is critical for the formation and retrieval of spatial memory. However, although the hippocampus is reciprocally connected to adjacent cortices within the medial temporal lobe and they, in turn, are connected to the neocortex, little is known regarding the function of these cortices in memory. Here, using a reference spatial memory task in the radial maze, we show that neurotoxic perirhinal cortex lesions produce a profound retrograde amnesia when learning-surgery intervals of 1 or 50 d are used (Experiment 1). With the aim of dissociating between consolidation and retrieval processes, we injected lidocaine either daily after training (Experiment 2) or before a retention test once the learning had been completed (Experiment 3). Results show that reversible perirhinal inactivation impairs retrieval but not consolidation. However, the same procedure followed in Experiment 2 disrupted consolidation when the lidocaine was injected into the dorsal hippocampus. The results of Experiment 4 rule out the possibility that the deficit in retrieval is due to a state-dependent effect. These findings demonstrate the differential contribution of various regions of the medial temporal lobe to memory, suggesting that the perirhinal cortex plays a key role in the retrieval of spatial information for a long period of time.  相似文献   

11.
Spaced learning with time to consolidate leads to more stabile memory traces. However, little is known about the neural correlates of trace stabilization, especially in humans. The present fMRI study contrasted retrieval activity of two well-learned sets of face-location associations, one learned in a massed style and tested on the day of learning (i.e., labile condition) and another learned in a spaced scheme over the course of one week (i.e., stabilized condition). Both sets of associations were retrieved equally well, but the retrieval of stabilized association was faster and accompanied by large-scale changes in the network supporting retrieval. Cued recall of stabilized as compared with labile associations was accompanied by increased activity in the precuneus, the ventromedial prefrontal cortex, the bilateral temporal pole, and left temporo–parietal junction. Conversely, memory representational areas such as the fusiform gyrus for faces and the posterior parietal cortex for locations did not change their activity with stabilization. The changes in activation in the precuneus, which also showed increased connectivity with the fusiform area, are likely to be related to the spatial nature of our task. The activation increase in the ventromedial prefrontal cortex, on the other hand, might reflect a general function in stabilized memory retrieval. This area might succeed the hippocampus in linking distributed neocortical representations.  相似文献   

12.
Spatial navigation requires a well-established network of brain regions, including the hippocampus, caudate nucleus, and retrosplenial cortex. Amnestic Mild Cognitive Impairment (aMCI) is a condition with predominantly memory impairment, conferring a high predictive risk factor for dementia. aMCI is associated with hippocampal atrophy and subtle deficits in spatial navigation. We present the first use of a functional Magnetic Resonance Imaging (fMRI) navigation task in aMCI, using a virtual reality analog of the Radial Arm Maze. Compared with controls, aMCI patients showed reduced activity in the hippocampus bilaterally, retrosplenial cortex, and left dorsolateral prefrontal cortex. Reduced activation in key areas for successful navigation, as well as additional regions, was found alongside relatively normal task performance. Results also revealed increased activity in the right dorsolateral prefrontal cortex in aMCI patients, which may reflect compensation for reduced activations elsewhere. These data support suggestions that fMRI spatial navigation tasks may be useful for staging of progression in MCI.  相似文献   

13.
Both the medial prefrontal cortex (mPFC) and hippocampus are implicated in working memory tasks in rodents. Specifically, it has been hypothesized that the mPFC is primarily engaged in the temporary storage and processing of information lasting from a subsecond to several seconds, while the hippocampal function becomes more critical as the working memory demand extends into longer temporal scales. Although these structures may be engaged in a temporally separable manner, the extent of their contributions in the "informational content" of working memory remains unclear. To investigate this issue, the mPFC and dorsal hippocampus (dHPC) were temporarily inactivated via targeted infusions of the GABA(A) receptor agonist muscimol in rats prior to their performance on a delayed alternation task (DAT), employing an automated figure-eight maze that required the animals to make alternating arm choice responses after 3-, 30-, and 60-sec delays for water reward. We report that inactivation of either the mPFC or dHPC significantly reduced DAT at all delay intervals tested. However, there were key qualitative differences in the behavioral effects. Specifically, mPFC inactivation selectively impaired working memory (i.e., arm choice accuracy) without altering reference memory (i.e., the maze task rule) and arm choice response latencies. In contrast, dHPC inactivation increased both reference memory errors and arm choice response latencies. Moreover, dHPC, but not mPFC, inactivation increased the incidence of successive working memory errors. These results suggest that while both the mPFC and hippocampus are necessarily involved in DAT, they seem to process different informational components associated with the memory task.  相似文献   

14.
Lesion studies indicate that rats without the medial prefrontal cortex (mPFC) have difficulty recalling fear extinction acquired the previous day. Several electrophysiological studies have also supported this observation by demonstrating that extinction-related increases in neuronal activity in the mPFC participate in expression of fear extinction. However, a more recent study has shown that fear extinction can be recalled, in certain circumstances, without mPFC potentiation, suggesting contribution of other circuits. Here, we examined this possibility in rats that were subjected to auditory fear conditioning, extinction training, and extinction retention test 7 d later. Electrolytic lesions were made in the mPFC, the motor cortex (MO), the dorsal septum (SEP), or the mediodorsal thalamus (MD), because of their potential participation in conditioned fear inhibition; combined lesions including the mPFC with the MO, SEP, or MD were also made. The lesions were made either 1 wk before conditioning or 1 d after extinction training. All rats normally extinguished their conditioned freezing behavior during extinction training and did not display any return of this behavior during the retention test. These data reveal that the mPFC is not required for the acquisition, the expression, or the retrieval of extinction memories but do not exclude the possibility that the mPFC normally participates in these processes.  相似文献   

15.
The rodent hippocampus is well known for its role in spatial navigation and memory, and recent evidence points to the retrosplenial cortex (RSC) as another element of a higher order spatial and mnemonic circuit. However, the functional interplay between hippocampus and RSC during spatial navigation remains poorly understood. To investigate this interaction, we examined cell activity in the RSC during spatial navigation in the water maze before and after acute hippocampal inactivation using expression of two immediate-early genes (IEGs), Arc and Homer 1a (H1a). Adult male rats were trained in a spatial water maze task for 4 days. On day 5, the rats received two testing/training sessions separated by 20 min. Eight minutes before the second session, different groups of rats received bilateral intrahippocampal infusion of tetrodotoxin (TTX), muscimol (MUS), or vehicle. Another group of rats (uni-TTX) received infusion of TTX in one hippocampus and vehicle in the other. Signals from Arc and H1a RNA probes correspond to the post- and pre-infusion sessions, respectively. Bilateral TTX and MUS impaired spatial memory, as expected, and decreased Arc expression in CA1 of hippocampus. Importantly, bilateral inactivation of hippocampus resulted in loss of behavior-induced Arc expression in RSC. Despite a lateralized effect in CA1, Arc expression was equivalently and bilaterally decreased in RSC of uni-TTX rats, consistent with a network level interaction between hippocampus and RSC. We conclude that the loss of hippocampal input alters activity of RSC neurons and compromises their ability to engage plastic processes dependent on IEG expression.  相似文献   

16.
Imaging, electrophysiological studies, and lesion work have shown that the medial temporal lobe (MTL) is important for episodic memory; however, it is unclear whether different MTL regions support the spatial, temporal, and item elements of episodic memory. In this study we used fMRI to examine retrieval performance emphasizing different aspects of episodic memory in the context of a spatial navigation paradigm. Subjects played a taxi-driver game ("yellowcab"), in which they freely searched for passengers and delivered them to specific landmark stores. Subjects then underwent fMRI scanning as they retrieved landmarks, spatial, and temporal associations from their navigational experience in three separate runs. Consistent with previous findings on item memory, perirhinal cortex activated most strongly during landmark retrieval compared with spatial or temporal source information retrieval. Both hippocampus and parahippocampal cortex activated significantly during retrieval of landmarks, spatial associations, and temporal order. We found, however, a significant dissociation between hippocampal and parahippocampal cortex activations, with spatial retrieval leading to greater parahippocampal activation compared with hippocampus and temporal order retrieval leading to greater hippocampal activation compared with parahippocampal cortex. Our results, coupled with previous findings, demonstrate that the hippocampus and parahippocampal cortex are preferentially recruited during temporal order and spatial association retrieval--key components of episodic "source" memory.  相似文献   

17.
Post-extinction exposure of rats to a sub-conditioning procedure can evoke conditioned fear, which may correspond to fear return and/or fear learning potentiation. The aim of the present study was to clarify this issue and examine the effects of tetanic stimulation of the hippocampus (HPC) and medial prefrontal cortex (mPFC), two brain regions implicated in post-extinction modulation of conditioned fear. Rats were initially submitted to five tone-shock pairings with either a 0.7-mA or 0.1-mA shock. Tone-evoked freezing was observed only with the higher shock intensity, indicating that the 0.1-mA shock corresponded to a sub-conditioning procedure. All conditioned rats underwent fear extinction with 20 tone-alone trials. When retrained with the sub-conditioning procedure, they displayed again tone-evoked freezing, except when the initial tone was unpaired or a new tone was paired with the 0.1-mA shock, demonstrating fear return rather than fear learning potentiation. We also found that HPC and mPFC tetanic stimulations, applied 24h after the sub-conditioning procedure, similarly reduced this fear return. However, mPFC inactivation abolished temporary HPC tetanus effect, whereas HPC inactivation did not interfere with mPFC tetanus effect. These data confirm our previous findings and reveal the nature of HPC-mPFC interactions in post-extinction modulation of conditioned fear.  相似文献   

18.
Pavlovian trace conditioning critically depends on the medial prefrontal cortex (mPFC) and hippocampus (HPC), whereas delay conditioning does not depend on these brain structures. Given that the cholinergic basal forebrain system modulates activity in both the mPFC and HPC, it was reasoned that the level of acetylcholine (ACh) release in these regions would show distinct profiles during testing in trace and delay conditioning paradigms. To test this assumption, microdialysis probes were implanted unilaterally into the mPFC and HPC of rats that were pre-trained in appetitive trace and delay conditioning paradigms using different conditional stimuli in the two tasks. On the day of microdialysis testing, dialysate samples were collected during a quiet baseline interval before trials were initiated, and again during performance in separate blocks of trace and delay conditioning trials in each animal. ACh levels were quantified using high-performance liquid chromatography and electrochemical detection techniques. Consistent with our hypothesis, results showed that ACh release in the mPFC was greater during trace conditioning than during delay conditioning. The level of ACh released during trace conditioning in the HPC was also greater than the levels observed during delay conditioning. While ACh efflux in both the mPFC and HPC selectively increased during trace conditioning, ACh levels in the mPFC during trace conditioning testing showed the greatest increases observed. These results demonstrate a dissociation in cholinergic activation of the mPFC and HPC during performance in trace but not delay appetitive conditioning, where this cholinergic activity may contribute to attentional mechanisms, adaptive response timing, or memory consolidation necessary for successful trace conditioning.  相似文献   

19.
The medial prefrontal cortex (mPFC) and the core region of the nucleus accumbens (AcbC) are key regions of a neural system that subserves risk-based decision making. Here, we examined whether dopamine (DA) signals conveyed to the mPFC and AcbC are critical for risk-based decision making. Rats with 6-hydroxydopamine or vehicle infusions into the mPFC or AcbC were examined in an instrumental task demanding probabilistic choice. In each session, probabilities of reward delivery after pressing one of two available levers were signaled in advance in forced trials followed by choice trials that assessed the animal??s preference. The probabilities of reward delivery associated with the large/risky lever declined systematically across four consecutive blocks but were kept constant within four subsequent daily sessions of a particular block. Thus, in a given session, rats need to assess the current value associated with the large/risky versus small/certain lever and adapt their lever preference accordingly. Results demonstrate that the assessment of within-session reward probabilities and probability discounting across blocks were not altered in rats with mPFC and AcbC DA depletions, relative to sham controls. These findings suggest that the capacity to evaluate the magnitude and likelihood of rewards associated with alternative courses of action seems not to rely on intact DA transmission in the mPFC or AcbC.  相似文献   

20.
In this functional MRI experiment, encoding of objects was associated with activation in left ventrolateral prefrontal/insular and right dorsolateral prefrontal and fusiform regions as well as in the left putamen. By contrast, correct recognition of previously learned objects (R judgments) produced activation in left superior frontal, bilateral inferior frontal, and right cerebellar regions, whereas correct rejection of distractor objects (N judgments) was associated with activation in bilateral prefrontal and anterior cingulate cortices, in right parietal and cerebellar regions, in the left putamen, and in the right caudate nucleus. The R minus N comparison showed activation in the left lateral prefrontal cortex and in bilateral cingulate cortices and precunei, while the N minus R comparison did not reveal any positive signal change. These results support the view that similar regions of the frontal lobe are involved in episodic encoding and retrieval processes, and that the successful episodic retrieval of newly learned objects is mainly based on a frontoparietal network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号