首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The GABAAR α4 subunit is highly expressed in the dentate gyrus region of the hippocampus at predominantly extra synaptic locations where, along with the GABAAR δ subunit, it forms GABAA receptors that mediate a tonic inhibitory current. The present study was designed to test hippocampus-dependent and hippocampus-independent learning and memory in GABAAR α4 subunit-deficient mice using trace and delay fear conditioning, respectively. Mice were of a mixed C57Bl/6J X 129S1/X1 genetic background from α4 heterozygous breeding pairs. The α4-knockout mice showed enhanced trace and contextual fear conditioning consistent with an enhancement of hippocampus-dependent learning and memory. These enhancements were sex-dependent, similar to previous studies in GABAAR δ knockout mice, but differences were present in both males and females. The convergent findings between α4 and δ knockout mice suggests that tonic inhibition mediated by α4βδ GABAA receptors negatively modulates learning and memory processes and provides further evidence that tonic inhibition makes important functional contributions to learning and behavior.  相似文献   

2.
GABAA/benzodiazepine receptors in the medial septum modulate the activity of cholinergic neurons that innervate the hippocampus. Injection of benzodiazepine (BDZ) agonists into the medial septum impairs working memory performance and decreases high-affinity choline transport (HAChT) in the hippocampus. In contrast, intraseptal injection of the BDZ antagonist flumazenil increases HAChT and prevents the memory deficits induced by systemic BDZs. The present studies attempted to further characterize the behavioral effects of medial septal injections of flumazenil to an endogenous negative modulator of the GABAA/BDZ receptor complex, diazepam binding inhibitor (DBI). Male Sprague–Dawley rats were cannulated to study the effects of intraseptal injections of these BDZ ligands on spatial working memory, anxiety-related behaviors in the elevated plus maze, and on general locomotor activity. Intraseptal flumazenil (10 nmol/0.5 μl) produced a delay-dependent enhancement of DNMTS performance after an 8-h, but not a 4-h, delay interval. This promnestic dose of flumazenil had no effect on locomotor activity and did not produce changes in measures of anxiety on the plus maze. Intraseptal injection of DBI had no effect (8 nmol/0.5 μl) or slightly impaired (4 nmol/0.5 μl) DNMTS radial maze performance following an 8-h delay, without producing changes in locomotion or plus maze behavior. These data demonstrate that flumazenil has a unique profile of activity in enhancing working memory following intraseptal injection.  相似文献   

3.
The startle response evoked by repeated presentation of a loud acoustic stimulus is regulated by the independent processes of sensitization and habituation. While schizophrenia is associated with information processing impairments, there is conflicting evidence regarding the existence of habituation deficits in schizophrenic patients. Recent clinical evidence, however, indicates that patients with schizophrenia display exaggerated startle sensitization and diminished habituation. Given the linkage between dopaminergic abnormalities and schizophrenia, the goal of the present investigation was to examine the effect of deleting D1 and D2-like dopamine receptors on sensitization and habituation of the acoustic startle reflex in mice. For these experiments, the acoustic startle reflex was assessed in dopamine D1, D2, and D3 receptor wild-type (WT) and knockout (KO) mice on a C57BL/6J background, using a methodology that can measure both sensitization and habituation. Mice lacking the D1 receptor gene displayed enhanced sensitization, along with a decrease in the amount of habituation that occurs in response to repetitive presentations of a startling stimulus. Conversely, the loss of the dopamine D2 or D3 receptor gene produced a sensitization deficit and a significant increase in habituation. The behavioral phenotype exhibited by D1 receptor KO mice is clearly distinct from that of the D2 and D3 receptor KO mice. The findings in D1 receptor KO mice are reminiscent of the abnormalities observed in schizophrenic patients tested in comparable startle paradigms, and indicate that D1 agonists may possess therapeutic efficacy against the information processing deficits associated with schizophrenia.  相似文献   

4.
This paper reviews the current work on mouse genetics, brain, and behaviour in my laboratory. It starts with an historical account of our research and shows how certain research themes, such as olfaction, learning, social behaviour, and environmental effects in rodents have led to our current research on behavioural phenotyping of inbred, mutant, knockout, and transgenic mice. We are concerned with finding neural and behavioural sequelae to genetic manipulations in mice and use a battery of tests to detect behaviours that are altered in genetically modified mice. In this way we are working to dissociate neural and behavioural effects of different gene manipulations in mouse models of neurodegenerative diseases. Sensory, motor, cognitive, affective, and social behaviours may all be affected by gene manipulation, thus careful behavioural techniques, with attention to the mice themselves, the apparatus, and procedure, experimenter variables, and environmental effects are necessary in order to determine a reliable and valid mouse behavioural phenotype. As both the genome and the environment have significant effects on the behavioural phenotype, our future research will utilize an epigenetic approach to examine how environmental cues modulate gene expression in the behavioural phenotyping of transgenic mice.  相似文献   

5.
Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have deleted Irs2, either in the whole brain or selectively in the forebrain, using the nestin Cre- or D6 Cre-deleter mouse lines, respectively. We show that brain- and forebrain-specific Irs2 knockout mice have enhanced hippocampal spatial reference memory. Furthermore, NesCreIrs2KO mice have enhanced spatial working memory and contextual- and cued-fear memory. Deletion of Irs2 in the brain also increases PSD-95 expression and the density of dendritic spines in hippocampal area CA1, possibly reflecting an increase in the number of excitatory synapses per neuron in the hippocampus that can become activated during memory formation. This increase in activated excitatory synapses might underlie the improved hippocampal memory formation observed in NesCreIrs2KO mice. Overall, these results suggest that Irs2 acts as a negative regulator on memory formation by restricting dendritic spine generation.  相似文献   

6.
To define the physiological role of IP33-kinase(A) in vivo, we have generated a mouse strain with a null mutation of the IP33-kinase(A) locus by gene targeting. Homozygous mutant mice were fully viable, fertile, apparently normal, and did not show any morphological anomaly in brain sections. In the mutant brain, the IP4 level was significantly decreased whereas the IP3 level did not change, demonstrating a major role of IP33-kinase(A) in the generation of IP4. Nevertheless, no significant difference was detected in the hippocampal neuronal cells of the wild-type and the mutant mice in the kinetics of Ca2+ regulation after glutamate stimulation. Electrophysiological analyses carried out in hippocampal slices showed that the mutation significantly enhanced the LTP in the hippocampal CA1 region, but had no effect on the LTP in dentate gyrus (DG). No difference was noted, however, between the mutant and the wild-type mice in the Morris water maze task. Our results indicate that IP33-kinase(A) may play an important role in the regulation of LTP in hippocampal CA1 region through the generation of IP4, but the enhanced LTP in the hippocampal CA1 does not affect spatial learning and memory.  相似文献   

7.
The requirement for de novo protein synthesis during multiple forms of learning, memory and behavior is well-established; however, we are only beginning to uncover the regulatory mechanisms that govern this process. In order to determine how translation initiation is regulated during neuroplasticity we engineered mutant C57Bl/6J mice that lack the translation repressor eukaryotic initiation factor 4E-binding protein 2 (4E-BP2) and have previously demonstrated that 4E-BP2 plays a critical role in hippocampus-dependent synaptic plasticity and memory. Herein, we examined the 4E-BP2 knockout mice in a battery of paradigms to address motor activity and motor skill learning, anxiety and social dominance behaviors, working memory and conditioned taste aversion. We found that the 4E-BP2 knockout mice demonstrated altered activity in the rotating rod test, light/dark exploration test, spontaneous alternation T-maze and conditioned taste aversion test. The information gained from these studies builds a solid foundation for future studies on the specific role of 4E-BP2 in various types of behavior, and for a broader, more detailed examination of the mechanisms of translational control in the brain.  相似文献   

8.
Fragile X syndrome (FXS) is the most common inherited form of mental retardation and is caused by the lack of fragile X mental retardation protein (FMRP). In the brain, spine abnormalities have been reported in both patients with FXS and Fmr1 knockout mice. This altered spine morphology has been linked to disturbed synaptic transmission related to altered signaling in the excitatory metabotropic glutamate receptor 5 (mGluR5) pathway. We investigated hippocampal protrusion morphology in adult Fmr1 knockout mice. Our results show a hippocampal CA1-specific altered protrusion phenotype, which was absent in the CA3 region of the hippocampus. This suggests a subregion-specific function of FMRP in synaptic plasticity in the brain.  相似文献   

9.
Nociceptin binds to nociceptin opioid peptide (NOP) receptors. We reported that although high doses of nociceptin impaired memory function and that these effects were mediated via NOP receptors, low doses of nociceptin attenuated the memory impairment, and these attenuating effects were not mediated via NOP receptors. Even very low doses of nociceptin were biologically active and suggested a certain binding site for this peptide, but the mechanism underlying this attenuating effect has not yet been elucidated. In the present study, we investigated the effect of an intrahippocampal injection (i.h.) of nociceptin on memory impairment induced by U0126, a MEK inhibitor, and Rp-cAMPS, a PKA inhibitor in a step-down type passive avoidance test. U0126 (2.63 nmol/mouse, i.h.) impaired memory formation and training-dependent phosphorylation of ERK2 in the hippocampus. Co-administration of nociceptin (10 fmol/mouse) significantly attenuated memory impairment, while it did not attenuate the inhibition of training-dependent phosphorylation of ERK2 induced by U0126. On the other hand, nociceptin did not attenuate memory impairment induced by Rp-cAMPS (0.448 nmol/mouse, i.h.). Nociceptin (1 fmol/mouse) also attenuated U0126 (5.26 nmol/mouse)-induced memory impairment in NOP receptor knockout mice. Nociceptin was reported to metabolize into fragments (1–13) and (14–17) in vivo, which showed pharmacological activities without affecting NOP receptors. Our findings showed that nociceptin (14–17) (1 fmol/mouse) also attenuated U0126-induced memory impairment, while nociceptin (1–13) (0.1–10 fmol/mouse) did not attenuate memory impairment. These results suggest a novel action site or mechanism for the attenuating effects of nociceptin and its metabolite, and the sequence of nociceptin (14–17) is a critical structure.  相似文献   

10.
Deletion of the GluA1 AMPA receptor subunit selectively impairs short-term memory for spatial locations. We further investigated this deficit by examining memory for discrete nonspatial visual stimuli in an operant chamber. Unconditioned suppression of magazine responding to visual stimuli was measured in wild-type and GluA1 knockout mice. Wild-type mice showed less suppression to a stimulus that had been presented recently than to a stimulus that had not. GluA1 knockout mice, however, showed greater suppression to a recent stimulus than to a nonrecent stimulus. Thus, GluA1 is not necessary for encoding, but affects the way that short-term memory is expressed.  相似文献   

11.
Previously, we demonstrated that mice in which the gene for the L-type voltage-gated calcium channel CaV1.3 is deleted (CaV1.3 knockout mice) exhibit an impaired ability to consolidate contextually-conditioned fear. Given that this form of Pavlovian fear conditioning is critically dependent on the basolateral complex of the amygdala (BLA), we were interested in the mechanisms by which CaV1.3 contributes to BLA neurophysiology. In the present study, we used in vitro amygdala slices prepared from CaV1.3 knockout mice and wild-type littermates to explore the role of CaV1.3 in long-term potentiation (LTP) and intrinsic neuronal excitability in the BLA. We found that LTP in the lateral nucleus (LA) of the BLA, induced by high-frequency stimulation of the external capsule, was significantly reduced in CaV1.3 knockout mice. Additionally, we found that BLA principal neurons from CaV1.3 knockout mice were hyperexcitable, exhibiting significant increases in firing rates and decreased interspike intervals in response to prolonged somatic depolarization. This aberrant increase in neuronal excitability appears to be at least in part due to a concomitant reduction in the slow component of the post-burst afterhyperpolarization. Together, these results demonstrate altered neuronal function in the BLA of CaV1.3 knockout mice which may account for the impaired ability of these mice to consolidate contextually-conditioned fear.  相似文献   

12.
The mammalian tachykinins are a family of closely related peptides including substance P, neurokinin A, neurokinin B and, recently, also hemokinin-1. They are present in the peripheral and central nervous systems, and bind to three known neurokinin (NK) receptors, the NK(1)-, NK(2)- and NK(3) receptors. In both rodents and humans, NK(3) receptors are expressed in brain structures which have been associated with learning and memory. Evidence for a role of NK(3) receptors in learning and memory has been found in NK(3) receptor knockout mice. Here, we investigated the influence of the NK(3) receptor agonist, senktide (0.1, 0.2 and 0.4 mg/kg), on the performance of C57BL/6 mice in a recently developed episodic-like memory task. Since a promnestic effect of senktide was expected, we employed an experimental protocol that provided sub-optimal learning conditions for episodic-like memory. The results indicate that senktide promotes episodic-like memory in mice in a dose-dependent manner, providing, for the first time, evidence for an involvement of NK(3) receptors in episodic-like memory.  相似文献   

13.
Deletion of the GluA1 AMPA receptor subunit impairs short-term spatial recognition memory. It has been suggested that short-term recognition depends upon memory caused by the recent presentation of a stimulus that is independent of contextual-retrieval processes. The aim of the present set of experiments was to test whether the role of GluA1 extends to nonspatial recognition memory. Wild-type and GluA1 knockout mice were tested on the standard object recognition task and a context-independent recognition task that required recency-dependent memory. In a first set of experiments it was found that GluA1 deletion failed to impair performance on either of the object recognition or recency-dependent tasks. However, GluA1 knockout mice displayed increased levels of exploration of the objects in both the sample and test phases compared to controls. In contrast, when the time that GluA1 knockout mice spent exploring the objects was yoked to control mice during the sample phase, it was found that GluA1 deletion now impaired performance on both the object recognition and the recency-dependent tasks. GluA1 deletion failed to impair performance on a context-dependent recognition task regardless of whether object exposure in knockout mice was yoked to controls or not. These results demonstrate that GluA1 is necessary for nonspatial as well as spatial recognition memory and plays an important role in recency-dependent memory processes.  相似文献   

14.
Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor6 (5-HT6) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT6 receptor in trained and untrained rats treated with the 5-HT6 receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT6 receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT6 receptor in the three structures examined. SB-399885 improved long-term memory at 48 h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24 h. Autoshaping training and treatment with SB-399885 increased 5-HT6 receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48 h. The scopolamine-induced amnesia suppressed 5-HT6 receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT6 receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT6 receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT6 receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues.  相似文献   

15.
Calcium (Ca2+) is involved in a myriad of cellular functions in the brain including synaptic plasticity. However, the role of intracellular Ca2+ stores in memory processing remains poorly defined. The current study explored a role for glutamate-dependent intracellular Ca2+ release in memory processing via blockade of metabotropic glutamate receptor subtype 1 (mGluR1) and inositol (1,4,5)-trisphosphate receptors (IP3Rs). Using a single-trial discrimination avoidance task developed for the young chick, administration of the specific and potent mGluR1 antagonist JNJ16259685 (500 nM, immediately post-training, ic), or the IP3R antagonist Xestospongin C (5 μM, immediately post-training, ic), impaired retention from 90 min post-training. These findings are consistent with mGluR1 activating IP3Rs to release intracellular Ca2+ required for long-term memory formation and have been interpreted within an LTP2 model. The consequences of different patterns of retention loss following ryanodine receptor (RyR) and IP3R inhibition are discussed.  相似文献   

16.
The goal of this study was to propose a new functional magnetic resonance imaging (fMRI) paradigm using a language‐free adaptation of a 2‐back working memory task to avoid cultural and educational bias. We additionally provide an index of the validity of the proposed paradigm and test whether the experimental task discriminates the behavioural performances of healthy participants from those of individuals with working memory deficits. Ten healthy participants and nine patients presenting working memory (WM) deficits due to acquired brain injury (ABI) performed the developed task. To inspect whether the paradigm activates brain areas typically involved in visual working memory (VWM), brain activation of the healthy participants was assessed with fMRIs. To examine the task's capacity to discriminate behavioural data, performances of the healthy participants in the task were compared with those of ABI patients. Data were analysed with GLM‐based random effects procedures and t‐tests. We found an increase of the BOLD signal in the specialized areas of VWM. Concerning behavioural performances, healthy participants showed the predicted pattern of more hits, less omissions and a tendency for fewer false alarms, more self‐corrected responses, and faster reaction times, when compared with subjects presenting WM impairments. The results suggest that this task activates brain areas involved in VWM and discriminates behavioural performances of clinical and non‐clinical groups. It can thus be used as a research methodology for behavioural and neuroimaging studies of VWM in block‐design paradigms.  相似文献   

17.
18.
The GluR1 subunit of the AMPA receptor is required for hippocampal-dependent memory formation, emotional learning and synaptic plasticity. Recent work has shown that GluR1-independent synaptic plasticity is mediated by nitric oxide. Nitric oxide activity is influenced by estrogen. It is unknown whether this gender-dependent effect conveys a gender dimorphic requirement of GluR1 for learning. This hypothesis was tested in two behavioral paradigms. In Experiment 1, the retention of contextual fear conditioning was impaired in male but not female GluR1 knockout mice. In Experiment 2, GluR1 knockout mice made significantly more arm entry errors during acquisition of a radial-arm watermaze task. This deficit was independent of gender. These results indicate that some forms of learning are gender dimorphic in GluR1 knockout mice. The results are discussed with reference to task and gender-specific interactions between GluR1 receptor intracellular signalling pathways.  相似文献   

19.
N-methyl-D-aspartate (NMDA) receptors play an important role in excitatory neurotransmission and mediate synaptic plasticity associated with learning and memory. NMDA receptors are composed of two NR1 and two NR2 subunits and the identity of the NR2 subunit confers unique electrophysiologic and pharmacologic properties to the receptor. The precise role of NR2C-containing receptors in vivo is poorly understood. We have performed a battery of behavioral tests on NR2C knockout/nβ-galactosidase knock-in mice and found no difference in spontaneous activity, basal anxiety, forced-swim immobility, novel object recognition, pain sensitivity and reference memory in comparison to wildtype counterparts. However, NR2C knockout mice were found to exhibit deficits in fear acquisition and working memory compared to wildtype mice. Deficit in fear acquisition correlated with lack of fear conditioning-induced plasticity at the thalamo-amygdala synapse. These findings suggest a unique role of NR2C-containing receptors in associative and executive learning representing a novel therapeutic target for deficits in cognition.  相似文献   

20.
Integrins comprise a large family of heterodimeric, transmembrane cell adhesion receptors that mediate diverse neuronal functions in the developing and adult CNS. Recent pharmacological and genetic studies have suggested that beta1-integrins are critical in synaptic plasticity and memory formation. To further define the role of integrins in these processes, we generated a postnatal forebrain and excitatory neuron-specific knockout of alpha3-integrin, one of several binding partners for beta1 subunit. At hippocampal Schaffer collateral-CA1 synapses, deletion of alpha3-integrin resulted in impaired long-term potentiation (LTP). Basal synaptic transmission and paired-pulse facilitation were normal in the absence of alpha3-integrin. Behavioral studies demonstrated that the mutant mice were selectively defective in a hippocampus-dependent, nonmatch-to-place working memory task, but were normal in other hippocampus-dependent spatial tasks. The impairment in LTP and working memory is similar to that observed in beta1-integrin conditional knockout mice, suggesting that alpha3-integrin is the functional binding partner for beta1 for these processes in the forebrain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号