首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main impacts of insulin favor the peripheral organs. Although it functions as a neuropeptide, insulin possesses also some central effects. The aim of this study was to determine the effect of intrahippocampal infusion of insulin on passive avoidance learning in healthy male rats. Thirty male wistar rats were divided into three groups (n=10 each). The experimental group had posttraining insulin infusion into the CA1 region of dorsal hippocampus, after which they were compared with sham (saline) and control (intact) groups. Insulin treated animals had greater latency to enter the dark compartment in compare with saline treated (p=0.023) or control groups (p=0.017). Upon our results, we concluded that intrahippocampal injections of insulin may enhance memory for a simple learning task which supports the concept that insulin possibly plays an endogenous role in memory formation.  相似文献   

2.
Understanding of the role of insulin in the brain has gradually expanded, from initial conceptions of the brain as insulin-insensitive through identification of a role in regulation of feeding, to recent demonstration of insulin as a key component of hippocampal memory processes. Conversely, systemic insulin resistance such as that seen in type 2 diabetes is associated with a range of cognitive and neural deficits. Here we review the evidence for insulin as a cognitive and neural modulator, including potential effector mechanisms, and examine the impact that type 2 diabetes has on these mechanisms in order to identify likely bases for the cognitive impairments seen in type 2 diabetic patients.  相似文献   

3.
Understanding of the role of insulin in the brain has gradually expanded, from initial conceptions of the brain as insulin-insensitive through identification of a role in regulation of feeding, to recent demonstration of insulin as a key component of hippocampal memory processes. Conversely, systemic insulin resistance such as that seen in type 2 diabetes is associated with a range of cognitive and neural deficits. Here we review the evidence for insulin as a cognitive and neural modulator, including potential effector mechanisms, and examine the impact that type 2 diabetes has on these mechanisms in order to identify likely bases for the cognitive impairments seen in type 2 diabetic patients.  相似文献   

4.
Evidence has shown that the insulin and insulin receptor (IR) play a role in cognitive function. However, the detailed mechanisms underlying insulin's action on learning and memory are not yet understood. Here we investigated changes in long-term memory-associated expression of the IR and downstream molecules in the rat hippocampus. After long-term memory consolidation following a water maze learning experience, gene expression of IR showed an up-regulation in the CA1, but a down-regulation in the CA3 region. These were correlated with a significant reduction in hippocampal IR protein levels. Learning-specific increases in levels of downstream molecules such as IRS-1 and Akt were detected in the synaptic membrane accompanied by decreases in Akt phosphorylation. Translocation of Shc protein to the synaptic membrane and activation of Erk1/2 were also observed after long-term memory formation. Despite the clear memory-correlated alterations in IR signaling pathways, insulin deficits in experimental diabetes mellitus (DM) rats induced by intraperitoneal injections of streptozotocin resulted in only minor memory impairments. This may be due to higher glucose levels in the DM brain, and to compensatory mechanisms from other signaling pathways such as the insulin-like growth factor-1 receptor (IGF-1R) system. Our results suggest that insulin/IR signaling plays a modulatory role in learning and memory processing, which may be compensated for by alternative pathways in the brain when an insulin deficit occurs.  相似文献   

5.
Insulin has been shown to impact on learning and memory in both humans and animals, but the downstream signaling mechanisms involved are poorly characterized. Insulin receptor substrate-2 (Irs2) is an adaptor protein that couples activation of insulin- and insulin-like growth factor-1 receptors to downstream signaling pathways. Here, we have deleted Irs2, either in the whole brain or selectively in the forebrain, using the nestin Cre- or D6 Cre-deleter mouse lines, respectively. We show that brain- and forebrain-specific Irs2 knockout mice have enhanced hippocampal spatial reference memory. Furthermore, NesCreIrs2KO mice have enhanced spatial working memory and contextual- and cued-fear memory. Deletion of Irs2 in the brain also increases PSD-95 expression and the density of dendritic spines in hippocampal area CA1, possibly reflecting an increase in the number of excitatory synapses per neuron in the hippocampus that can become activated during memory formation. This increase in activated excitatory synapses might underlie the improved hippocampal memory formation observed in NesCreIrs2KO mice. Overall, these results suggest that Irs2 acts as a negative regulator on memory formation by restricting dendritic spine generation.  相似文献   

6.
The discovery of multiple memory systems supported by discrete brain regions has been one of the most important advances in behavioral neuroscience. A wealth of studies have investigated the role of the hippocampus and related structures in supporting various types of memory classifications. While the exact classification that best describes hippocampal function is often debated, a specific subset of cognitive function that is focused on the use of spatial information to form hippocampal cognitive maps has received extensive investigation. These studies frequently employ a variety of experimental manipulations including brain lesions, temporary neural blockade due to cooling or discrete injections of specific drugs. While these studies have provided important insights into the function of the hippocampus, they are limited due to the invasive nature of the manipulation. Ethanol is a drug that is easily administered in a non-invasive fashion, is rapidly absorbed and produces effects only in specific brain regions. The hippocampus is one brain region affected by acute ethanol administration. The following review summarizes research from the last 20 years investigating the effects of acute ethanol administration on one specific type of hippocampal cognitive function, namely spatial memory. It is proposed that among its many effects, one specific action of acute ethanol administration is to produce similar cognitive and neurophysiological effects as lesions of the hippocampus. Based on these similarities and the ease of its use, it is concluded that acute ethanol administration is a valuable tool in studying hippocampal function and multiple memory systems.  相似文献   

7.
The efficiency of somatic energy metabolism is correlated with cognitive change over the lifespan. This relationship is bidirectional, with improved overall fitness associated with enhanced synaptic function and neuroprotection, and synaptic endangerment occurring in the context of impaired energy metabolism. In this review, we discuss recent advancements in the fields of exercise, dietary energy intake and diabetes, as they relate to neuronal function in the hippocampus. Because hippocampal neurons have energy requirements that are relatively higher than those of other brain regions, they are uniquely poised to benefit from exercise, and to be harmed by diabetes. We view exercise and dietary energy restriction as being associated with enhanced hippocampal plasticity at one end of a continuum, with obesity and diabetes accompanied by cognitive impairment at the other end of the continuum. Understanding the mechanisms for this continuum may yield novel therapeutic targets for the prevention and treatment of cognitive decline following aging, disease, or injury.  相似文献   

8.
The interaction between platelet activating factor (PAF) and NMDA receptor function in hippocampal and dorsal striatal memory processes was examined. In both a hidden and a visible platform water maze task, peripheral post-training injection of MK-801 (0.05 mg/kg) impaired memory. Post-training intrahippocampal infusions of PAF (1.0 microg/0.5 microl) enhanced memory in the hidden platform task, while intradorsal striatal infusion of PAF (1.0 microg/0.5 microl) enhanced memory in the visible platform task. The memory impairing effects of post-training injection of MK-801 was blocked by concurrent intrahippocampal infusion of PAF. In contrast, post-training injection of MK-801 blocked the memory enhancing effects of concurrent intradorsal striatal infusion of PAF. The results suggest that (1) the memory enhancing effects of intracerebral PAF infusion involve an interaction with NMDA receptor function, and (2) the nature of this interaction may represent a differential mechanism mediating the distinct roles of the hippocampus and dorsal striatum in cognitive memory and stimulus-response habit formation, respectively.  相似文献   

9.
Testosterone (T) may enhance cognitive performance. However, its mechanisms are not well understood. First, we hypothesized that if T's effects are mediated in part through actions of its 5alpha-reduced metabolites, dihydrotestosterone (DHT) and/or 3alpha-androstanediol (3alpha-diol) in the hippocampus, then T, DHT, and 3alpha-diol-administration directly to the hippocampus should enhance learning and memory in the inhibitory avoidance task. In order to test this hypothesis, gonadectomized (GDX) male rats were administered T, DHT, or 3alpha-diol via intrahippocampal inserts immediately following training in the inhibitory avoidance task. We found that T tended to increase, and DHT and 3alpha-diol significantly increased, performance in the inhibitory avoidance task compared to vehicle-administered GDX rats. Second, we hypothesized that, if androgens' effects are due in part to actions of 3alpha-diol in the hippocampus, then systemic or intrahippocampal administration of 3alpha-diol should significantly enhance cognitive performance of GDX male rats. Third, we hypothesized that, if androgen metabolites can have actions at estrogen receptors (ERs) in the hippocampus, then administration of ER antisense oligonucleotides (AS-ODNs) directly to the hippocampus of GDX, 3alpha-diol replaced, rats would decrease learning in the inhibitory avoidance task. We found that intrahippocampal administration of AS-ODNs for ERbeta, but not ERalpha, significantly decreased learning and memory of 3alpha-diol replaced rats. Together, these findings suggest that T's effects to enhance learning and memory may take place, in part, through actions of its metabolite, 3alpha-diol, at ERbeta in the dorsal hippocampus.  相似文献   

10.
Eyeblink classical conditioning is a useful paradigm for the study of the neurobiology of learning, memory, and aging, which also has application in the differential diagnosis of neurodegenerative diseases expressed in advancing age. Converging evidence from studies of eyeblink conditioning in neurological patients and brain imaging in normal adults document parallels in the neural substrates of this form of associative learning in humans and non-human mammals. Age differences in the short-delay procedure (400 ms CS-US interval) appear in middle age in humans and may be caused at least in part by cerebellar cortical changes such as loss of Purkinje cells. Whereas the hippocampus is not essential for conditioning in the delay procedure, disruption of hippocampal cholinergic neurotransmission impairs acquisition and slows the rate of learning. Alzheimer’s disease (AD) profoundly disrupts the hippocampal cholinergic system, and patients with AD consistently perform poorly in eyeblink conditioning. We hypothesize that disruption of hippocampal cholinergic pathways in AD in addition to age-associated Purkinje cell loss results in severely impaired eyeblink conditioning. The earliest pathology in AD occurs in entorhinal cortical input to hippocampus, and eyeblink conditioning may detect this early disruption before declarative learning and memory circuits become impaired. A case study is presented in which eyeblink conditioning detected impending dementia six years before changes on other screening tests indicated impairment. Because eyeblink conditioning is simple, non-threatening, and non-invasive, it may become a useful addition to test batteries designed to differentiate normal aging from mild cognitive impairment that progresses to AD and AD from other types of dementia.  相似文献   

11.
Exposures to uncontrollable stress have been shown to alter ensuing synaptic plasticity in the hippocampus and interfere with hippocampal-dependent spatial memory in rats. The present study examined whether stress, which impairs hippocampal long-term potentiation (LTP), also affects (nonspatial) hippocampal-dependent object-recognition memory, as tested on the visual paired comparison task (VPC) in rats. After undergoing an inescapable restraint–tailshock stress experience, rats exhibited markedly impaired recognition memory at the 3-h (long) familiarization-to-test phase delay but not at the 5-min (short) delay. In contrast, unstressed control animals showed robust recognition memory (i.e., they exhibited reliable preferences for novel over familiar objects) at both short- and long-delay periods. The impairing effect of stress on long-delay recognition memory was transient because 48 h after undergoing stress experience, animals performed normally at the long delay. Similar to stress, microinfusions of DL-2-amino-5-phosphonovaleric acid (APV), a competitive N-methyl-D-aspartate receptor (NMDAR) antagonist that blocks LTP, into the dorsal hippocampus selectively impaired object-recognition memory at the long-delay period. Together, these results suggest that stress and intrahippocampal administration of APV affect recognition memory by influencing synaptic plasticity in the hippocampus.

[The following individuals kindly provided reagents, samples, or unpublished information as indicated in the paper H. Blair.]

  相似文献   

12.
Several molecules were recently found to be important for the memory retrieval process in the hippocampus; however, the mechanisms underlying the memory retrieval remain poorly understood. GSK-3β has been implicated in the control of synaptic plasticity and memory formation. Here, we investigated the relationship between hippocampal GSK-3β activity and memory retrieval using behavioral and Western blotting methods. We found that GSK-3β was activated in the hippocampus after a retention session in the passive avoidance task. An intrahippocampal injection of the GSK-3β inhibitor, SB 216763, before the retention session blocked memory retrieval (but not reconsolidation) without affecting locomotor activity. These results suggest that GSK-3β activation would be essential for memory retrieval in the hippocampus.  相似文献   

13.
Procedural and declarative memory systems are postulated to interact in either a synergistic or a competitive manner, and memory consolidation appears to be a highly critical stage for this process. However, the precise cellular mechanisms subserving these interactions remain unknown. To investigate this issue, 24-h retention performances were examined in mice given post-training intrahippocampal injections of forskolin (FK) aiming at stimulating hippocampal adenylyl cyclases (ACs). The injection was given at different time points over a period of 9 h following acquisition in either an appetitive bar-pressing task or water-maze tasks challenging respectively "response memory" and "place memory." Retention testing (24 h) showed that FK injection altered memory formation only when given within a 3- to 6-h time window after acquisition but yielded opposite memory effects as a function of task demands. Retention of the spatial task was impaired, whereas retention of both the cued-response in the water maze and the rewarded bar-press response were improved. Intrahippocampal injections of FK produced an increase in pCREB immunoreactivity, which was strictly limited to the hippocampus and lasted less than 2 h, suggesting that early effects (0-2 h) of FK-induced cAMP/CREB activation can be distinguished from late effects (3-6 h). These results delineate a consolidation period during which specific cAMP levels in the hippocampus play a crucial role in enhancing memory processes mediated by other brain regions (e.g., dorsal or ventral striatum) while eliminating interference by the formation of hippocampus-dependent memory.  相似文献   

14.
Matrix metalloproteinases (MMPs) are a family of extracellularly acting proteolytic enzymes with well-recognized roles in plasticity and remodeling of synaptic circuits during brain development and following brain injury. However, it is now becoming increasingly apparent that MMPs also function in normal, nonpathological synaptic plasticity of the kind that may underlie learning and memory. Here, we extend this idea by investigating the role and regulation of MMP-9 in an inhibitory avoidance (IA) learning and memory task. We demonstrate that following IA training, protein levels and proteolytic activity of MMP-9 become elevated in hippocampus by 6 h, peak at 12-24 h, then decline to baseline values by approximately 72 h. When MMP function is abrogated by intrahippocampal infusion of a potent gelatinase (MMP-2 and MMP-9) inhibitor 3.5 h following IA training, a time prior to the onset of training-induced elevation in levels, IA memory retention is significantly diminished when tested 1-3 d later. Animals impaired at 3 d exhibit robust IA memory when retrained, suggesting that such impairment is not likely attributed to toxic or other deleterious effects that permanently disrupt hippocampal function. In anesthetized adult rats, the effective distance over which synaptic plasticity is impaired by a single intrahippocampal infusion of the MMP inhibitor of the kind that blocks IA memory is approximately 1200 microm. Taken together, these data suggest that IA training induces a slowly emerging, but subsequently protracted period of MMP-mediated proteolysis critical for enabling long-lasting synaptic modification that underlies long-term memory consolidation.  相似文献   

15.
The hippocampus is a subcortical structure in the medial temporal lobe involved in cognitive functions such as spatial navigation and reorientation, episodic memory, and associative learning. While much is understood about the role of hippocampal function in learning and memory in adults, less is known about the relations between the hippocampus and the development of these cognitive skills in young children due to the limitations of using standard methods (e.g., MRI) to examine brain structure and function in developing populations. This study used hippocampal‐dependent trace eyeblink conditioning (EBC) as a feasible approach to examine individual differences in hippocampal functioning as they relate to spatial reorientation and episodic memory performance in young children. Three‐ to six‐year‐old children (N = 50) completed tasks that measured EBC, spatial reorientation, and episodic memory, as well as non‐hippocampal‐dependent processing speed abilities. Results revealed that when age was held constant, individual differences in EBC performance were significantly related to individual differences in performance on the spatial reorientation test, but not on the episodic memory or processing speed tests. When the relations between hippocampal‐dependent EBC and different reorientation strategies were explored, it was found that individual differences in hippocampal function predicted the use of geometric information for reorienting in space as opposed to a combined strategy that uses both geometric information and salient visual cues. The utilization of eyeblink conditioning to examine hippocampal function in young populations and its implications for understanding the dissociation between spatial reorientation and episodic memory development are discussed.  相似文献   

16.
We present an overview of two of our on-going projects relating processes in the hippocampus to memory. We are trying to understand why retrograde amnesia occurs after damage to the hippocampus. Our experiments establish the generality of several new retrograde amnesia phenomena that are at odds with the consensus view of the role of the hippocampus in memory. We show in many memory tasks that complete damage to the hippocampus produces retrograde amnesia that is equivalent for recent and remote memories. Retrograde amnesia affects a much wider range of memory tasks than anterograde amnesia. Normal hippocampal processes can interfere with retention of a long-term memory stored outside the hippocampus. We conclude that the hippocampus competes with nonhippocampal systems during memory encoding and retrieval. Finally, we outline a project to understand and manipulate adult hippocampal neurogenesis in order to repair damaged hippocampal circuitry to recover lost cognitive functions.  相似文献   

17.
Nonreinforced retrieval can cause extinction and/or reconsolidation, two processes that affect subsequent retrieval in opposite ways. Using the Morris water maze task we show that, in the rat, repeated nonreinforced expression of spatial memory causes extinction, which is unaffected by inhibition of protein synthesis within the CA1 region of the dorsal hippocampus. However, if the number of nonreinforced retrieval trials is insufficient to induce long-lasting extinction, then a hippocampal protein synthesis-dependent reconsolidation process recovers the original memory. Inhibition of hippocampal protein synthesis after reversal learning sessions impairs retention of the reversed preference and blocks persistence of the original one, suggesting that reversal learning involves reconsolidation rather than extinction of the original memory. Our results suggest the existence of a hippocampal protein synthesis-dependent reconsolidation process that operates to recover or update retrieval-weakened memories from incomplete extinction.  相似文献   

18.
Eyeblink classical conditioning is a useful paradigm for the study of the neurobiology of learning, memory, and aging, which also has application in the differential diagnosis of neurodegenerative diseases expressed in advancing age. Converging evidence from studies of eyeblink conditioning in neurological patients and brain imaging in normal adults document parallels in the neural substrates of this form of associative learning in humans and non-human mammals. Age differences in the short-delay procedure (400 ms CS-US interval) appear in middle age in humans and may be caused at least in part by cerebellar cortical changes such as loss of Purkinje cells. Whereas the hippocampus is not essential for conditioning in the delay procedure, disruption of hippocampal cholinergic neurotransmission impairs acquisition and slows the rate of learning. Alzheimer's disease (AD) profoundly disrupts the hippocampaL cholinergic system, and patients with AD consistently perform poorly in eyeblink conditioning. We hypothesize that disruption of hippocampal cholinergic pathways in AD in addition to age-associated Purkinje cell loss results in severely impaired eyeblink conditioning. The earliest pathology in AD occurs in entorhinal cortical input to hippocampus, and eyeblink conditioning may detect this early disruption before declarative learning and memory circuits become impaired. A case study is presented in which eyeblink conditioning detected impending dementia six years before changes on other screening tests indicated impairment. Because eyeblink conditioning is simple, non-threatening, and non-invasive, it may become a useful addition to test batteries designed to differentiate normal aging from mild cognitive impairment that progresses to AD and AD from other types of dementia.  相似文献   

19.
A common conceptualization of the organization of memory systems in brain is that different types of memory are mediated by distinct neural systems. Strong support for this view comes from studies that show double (or triple) dissociations between spatial, response, and emotional memories following selective lesions of hippocampus, striatum, and the amygdala. Here, we examine the extent to which hippocampal and striatal neural activity patterns support the multiple memory systems view. A comparison is made between hippocampal and striatal neural correlates with behavior during asymptotic performance of spatial and response maze tasks. Location- (or place), movement, and reward-specific firing patterns were found in both structures regardless of the task demands. Many, but not all, place fields of hippocampal and striatal neurons were similarly affected by changes in the visual and reward context regardless of the cognitive demands. Also, many, but not all, hippocampal and striatal movement-sensitive neurons showed significant changes in their behavioral correlates after a change in visual context, irrespective of cognitive strategy. Similar partial reorganization was observed following manipulations of the reward condition for cells recorded from both structures, again regardless of task. Assuming that representations that persist across context changes reflect learned information, we make the following conclusions. First, the consistent pattern of partial reorganization supports a view that the analysis of spatial, response, and reinforcement information is accomplished via an error-driven, or match-mismatch, algorithm across neural systems. Second, task-relevant processing occurs continuously within hippocampus and striatum regardless of the cognitive demands of the task. Third, given the high degree of parallel processing across allegedly different memory systems, we propose that different neural systems may effectively compete for control of a behavioral expression system. The strength of the influence of any one neural system on behavioral output is likely modulated by factors such as motivation, experience, or hormone status.  相似文献   

20.
Research on the role of the hippocampus in object recognition memory has produced conflicting results. Previous studies have used permanent hippocampal lesions to assess the requirement for the hippocampus in the object recognition task. However, permanent hippocampal lesions may impact performance through effects on processes besides memory consolidation including acquisition, retrieval, and performance. To overcome this limitation, we used an intrahippocampal injection of the GABA agonist muscimol to reversibly inactivate the hippocampus immediately after training mice in two versions of an object recognition task. We found that the inactivation of the dorsal hippocampus after training impairs object-place recognition memory but enhances novel object recognition (NOR) memory. However, inactivation of the dorsal hippocampus after repeated exposure to the training context did not affect object recognition memory. Our findings suggest that object recognition memory formation does not require the hippocampus and, moreover, that activity in the hippocampus can interfere with the consolidation of object recognition memory when object information encoding occurs in an unfamiliar environment.The medial temporal lobe plays an important role in recognition memory formation, as damage to this brain structure in humans, monkeys, and rodents impairs performance in recognition memory tasks (for review, see Squire et al. 2007). Within the medial temporal lobe, studies have consistently demonstrated that the perirhinal cortex is involved in this form of memory (Brown and Aggleton 2001; Winters and Bussey 2005; Winters et al. 2007, 2008; Balderas et al. 2008). In contrast, the role of the hippocampus in object recognition memory remains a source of debate. Some studies have reported novel object recognition (NOR) impairments in animals with hippocampal lesions (Clark et al. 2000; Broadbent et al. 2004, 2010), yet others have reported no impairments (Winters et al. 2004; Good et al. 2007). Differences in hippocampal lesion size and behavioral procedures among the different studies have been implicated as the source of discrepancy in these findings (Ainge et al. 2006), but previous studies have not examined the consequences of environment familiarity on the hippocampus dependence of object recognition memory.Previous studies addressing the role of the hippocampus in recognition memory relied on permanent, pre-training lesions (Clark et al. 2000; Broadbent et al. 2004; Winters et al. 2004; Good et al. 2007). Permanent lesions inactivate the hippocampus not only during the consolidation phase, but also during habituation, acquisition, and memory retrieval, potentially confounding interpretation of the results. Furthermore, permanent lesion studies require long surgery recovery times during which extrahippocampal changes may emerge to mask or compensate for the loss of hippocampal function. To overcome these problems, we reversibly inactivated the dorsal hippocampus after training mice in two versions of the object recognition task. We infused muscimol, a γ-aminobutyric acid (GABA) receptor type A agonist, into the dorsal hippocampus immediately after training in an object-place recognition task or immediately following training in a NOR task. Consistent with previous studies (Save et al. 1992; Galani et al. 1998; Mumby et al. 2002; Stupien et al. 2003; Aggleton and Brown 2005), we observed that hippocampal inactivation impairs object-place recognition memory. Interestingly, we observed that the degree of contextual familiarity can influence NOR memory formation. We found that when shorter periods of habituation to the experimental environment were used, hippocampal inactivation enhances long-term NOR memory. In contrast, after extended periods of contextual habituation, long-term recognition memory was unaltered by hippocampal inactivation. Together these results suggest that if familiarization with objects occurs at a stage in which the contextual environment is relatively novel, the hippocampus plays an inhibitory role on the consolidation of object recognition memory. Supporting this view, we observed that object recognition memory is unaffected by hippocampal inactivation when initial exploration of the objects occurred in a familiar environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号