首页 | 本学科首页   官方微博 | 高级检索  
     

多项式加工树模型在再认启发式中的应用
作者姓名:匡子翌  王效广彭顺杨磊  胡祥恩
作者单位:华中师范大学
摘    要:摘 要 再认启发式利用再认线索进行决策。以往研究采用一致率、击中率、虚报率和区分指数来表示再认启发式使用,然而这些方法都存在局限。多项式加工树模型能够分离不同的认知加工过程,为了解决再认使用与知识使用的混淆,研究者提出一种多项式加工树模型 r-model 测量再认启发式的使用。本文将重 点介绍 r-model,具体包括 r-model 的内容、数据分析以及考虑个体差异的分层 r-model。最后,从 r-model 的模型修正和边界条件两个方面提出未来研究方向。 关键词 再认启发式;流畅启发式;多项式加工树;贝叶斯分层模型

关 键 词:关键词:再认启发式  流畅启发式  多项式加工树  贝叶斯分层模型  
收稿时间:2019-05-27
修稿时间:2020-07-19
本文献已被 CNKI 等数据库收录!
点击此处可从《心理科学》浏览原始摘要信息
点击此处可从《心理科学》下载全文
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号