首页 | 本学科首页   官方微博 | 高级检索  
     


Absolute Probability Functions for Intuitionistic Propositional Logic
Authors:Roeper  Peter  Leblanc  Hugues
Affiliation:(1) Department of Philosophy, Australian National University, Canberra, ACT, 0200, Australia
Abstract:
Provided here is a characterisation of absolute probability functions for intuitionistic (propositional) logic L, i.e. a set of constraints on the unary functions P from the statements of L to the reals, which insures that (i) if a statement A of L is provable in L, then P(A) = 1 for every P, L's axiomatisation being thus sound in the probabilistic sense, and (ii) if P(A) = 1 for every P, then A is provable in L, L's axiomatisation being thus complete in the probabilistic sense. As there are theorems of classical (propositional) logic that are not intuitionistic ones, there are unary probability functions for intuitionistic logic that are not classical ones. Provided here because of this is a means of singling out the classical probability functions from among the intuitionistic ones.
Keywords:intuitionistic logic  probability functions  probability semantics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号