首页 | 本学科首页   官方微博 | 高级检索  
     


Equivalential and algebraizable logics
Authors:Burghard Herrmann
Affiliation:(1) II. Math. Inst. Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany
Abstract:The notion of an algebraizable logic in the sense of Blok and Pigozzi [3] is generalized to that of a possibly infinitely algebraizable, for short, p.i.-algebraizable logic by admitting infinite sets of equivalence formulas and defining equations. An example of the new class is given. Many ideas of this paper have been present in [3] and [4]. By a consequent matrix semantics approach the theory of algebraizable and p.i.-algebraizable logics is developed in a different way. It is related to the theory of equivalential logics in the sense of Prucnal and Wronacuteski [18], and it is extended to nonfinitary logics. The main result states that a logic is algebraizable (p.i.-algebraizable) iff it is finitely equivalential (equivalential) and the truth predicate in the reduced matrix models is equationally definable.Most of the results of the present and a forthcoming paper originally appeared in [13].Presented by Wolfgang Rautenberg
Keywords:algebraizable logics  equivalential logics  implicative logics  protoalgebraic logics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号