Timing precision in continuation and synchronization tapping |
| |
Authors: | Amdras Semjen Hans-Henning Schulze Dirk Vorberg |
| |
Affiliation: | Centre National de la Recherche Scientifique, Marseille, France. semjen@lnf.cnrs-mrs.fr |
| |
Abstract: | Wing and Kristofferson (1973) have shown that temporal precision in self-paced tapping is limited by variability in a central timekeeper and by variability arising in the peripheral motor system. Here we test an extension of the Wing–Kristofferson model to synchronization with periodic external events that was proposed by Vorberg and Wing (1994). In addition to the timekeeper and motor components, a linear phase correction mechanism is assumed which is triggered by the last or the last two synchronization errors. The model is tested in an experiment that contrasts synchronized and self-paced trapping, with response periods ranging from 200–640 ms. The variances of timekeeper and motor delays and the error correction parameters were estimated from the auto-covariance functions of the inter-response intervals in continuation and the asynchronies in synchronization. Plausible estimates for all parameters were obtained when equal motor variance was assumed for synchronization and continuation. Timekeeper variance increased with metronome period, but more steeply during continuation than during synchronization, suggesting that internal timekeeping processes are stabilized by periodic external signals. First-order error correction became more important as the metronome period increased, whereas the contribution of second-order error correction decreased. It is concluded that the extended two-level model accounts well for both synchronization and continuation performance. Received: 16 November 1998 / Accepted: 21 April 1999 |
| |
Keywords: | |
本文献已被 PubMed SpringerLink 等数据库收录! |
|