首页 | 本学科首页   官方微博 | 高级检索  
     


Post-training reversible inactivation of the hippocampus enhances novel object recognition memory
Authors:Ana M.M. Oliveira  Joshua D. Hawk  Ted Abel  Robbert Havekes
Affiliation:Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
Abstract:
Research on the role of the hippocampus in object recognition memory has produced conflicting results. Previous studies have used permanent hippocampal lesions to assess the requirement for the hippocampus in the object recognition task. However, permanent hippocampal lesions may impact performance through effects on processes besides memory consolidation including acquisition, retrieval, and performance. To overcome this limitation, we used an intrahippocampal injection of the GABA agonist muscimol to reversibly inactivate the hippocampus immediately after training mice in two versions of an object recognition task. We found that the inactivation of the dorsal hippocampus after training impairs object-place recognition memory but enhances novel object recognition (NOR) memory. However, inactivation of the dorsal hippocampus after repeated exposure to the training context did not affect object recognition memory. Our findings suggest that object recognition memory formation does not require the hippocampus and, moreover, that activity in the hippocampus can interfere with the consolidation of object recognition memory when object information encoding occurs in an unfamiliar environment.The medial temporal lobe plays an important role in recognition memory formation, as damage to this brain structure in humans, monkeys, and rodents impairs performance in recognition memory tasks (for review, see Squire et al. 2007). Within the medial temporal lobe, studies have consistently demonstrated that the perirhinal cortex is involved in this form of memory (Brown and Aggleton 2001; Winters and Bussey 2005; Winters et al. 2007, 2008; Balderas et al. 2008). In contrast, the role of the hippocampus in object recognition memory remains a source of debate. Some studies have reported novel object recognition (NOR) impairments in animals with hippocampal lesions (Clark et al. 2000; Broadbent et al. 2004, 2010), yet others have reported no impairments (Winters et al. 2004; Good et al. 2007). Differences in hippocampal lesion size and behavioral procedures among the different studies have been implicated as the source of discrepancy in these findings (Ainge et al. 2006), but previous studies have not examined the consequences of environment familiarity on the hippocampus dependence of object recognition memory.Previous studies addressing the role of the hippocampus in recognition memory relied on permanent, pre-training lesions (Clark et al. 2000; Broadbent et al. 2004; Winters et al. 2004; Good et al. 2007). Permanent lesions inactivate the hippocampus not only during the consolidation phase, but also during habituation, acquisition, and memory retrieval, potentially confounding interpretation of the results. Furthermore, permanent lesion studies require long surgery recovery times during which extrahippocampal changes may emerge to mask or compensate for the loss of hippocampal function. To overcome these problems, we reversibly inactivated the dorsal hippocampus after training mice in two versions of the object recognition task. We infused muscimol, a γ-aminobutyric acid (GABA) receptor type A agonist, into the dorsal hippocampus immediately after training in an object-place recognition task or immediately following training in a NOR task. Consistent with previous studies (Save et al. 1992; Galani et al. 1998; Mumby et al. 2002; Stupien et al. 2003; Aggleton and Brown 2005), we observed that hippocampal inactivation impairs object-place recognition memory. Interestingly, we observed that the degree of contextual familiarity can influence NOR memory formation. We found that when shorter periods of habituation to the experimental environment were used, hippocampal inactivation enhances long-term NOR memory. In contrast, after extended periods of contextual habituation, long-term recognition memory was unaltered by hippocampal inactivation. Together these results suggest that if familiarization with objects occurs at a stage in which the contextual environment is relatively novel, the hippocampus plays an inhibitory role on the consolidation of object recognition memory. Supporting this view, we observed that object recognition memory is unaffected by hippocampal inactivation when initial exploration of the objects occurred in a familiar environment.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号