首页 | 本学科首页   官方微博 | 高级检索  
     


Constrained multidimensional scaling inN spaces
Authors:Bruce Bloxom
Affiliation:(1) Department of Psychology, Vanderbilt University, 37240 Nashville, Tennessee
Abstract:A gradient method is used to obtain least squares estimates of parameters of them-dimensional euclidean model simultaneously inN spaces, given the observation of all pairwise distances ofn stimuli for each space. The procedure can estimate an additive constant as well as stimulus projections and the metric of the reference axes of the configuration in each space. Each parameter in the model can be fixed to equal some a priori value, constrained to be equal to any other parameter, or free to take on any value in the parameter space. Two applications of the procedure are described.
Keywords:individual differences in multidimensional scaling  least squares estimation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号