首页 | 本学科首页   官方微博 | 高级检索  
     


Bayes factors: Prior sensitivity and model generalizability
Authors:Charles C. Liu  Murray Aitkin
Affiliation:a Accident Research Centre, Monash University, VIC, 3800, Australia
b Department of Psychology, University of Melbourne, VIC, 3010, Australia
Abstract:
Model selection is a central issue in mathematical psychology. One useful criterion for model selection is generalizability; that is, the chosen model should yield the best predictions for future data. Some researchers in psychology have proposed that the Bayes factor can be used for assessing model generalizability. An alternative method, known as the generalization criterion, has also been proposed for the same purpose. We argue that these two methods address different levels of model generalizability (local and global), and will often produce divergent conclusions. We illustrate this divergence by applying the Bayes factor and the generalization criterion to a comparison of retention functions. The application of alternative model selection criteria will also be demonstrated within the framework of model generalizability.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号