首页 | 本学科首页   官方微博 | 高级检索  
     


A probabilistic multidimensional scaling with unique axes1
Authors:TAKAHIRO TSUCHIYA
Abstract:Abstract: A probabilistic multidimensional scaling model is proposed. The model assumes that the coordinates of each stimulus are normally distributed with variance Σi = diag(σ21, … σ2Ri). The advantage of this model is that axes are determined uniquely. The distribution of the distance between two stimuli is obtained by polar coordinates transformation. The method of maximum likelihood estimation for means and variances using the EM algorithm is discussed. Further, simulated annealing is suggested as a means of obtaining initial values in order to avoid local maxima. A simulation study shows that the estimates are accurate, and a numerical example concerning the location of Japanese cities shows that natural axes can be obtained without introducing individual parameters.
Keywords:probabilistic multidimensional scaling  polar coordinates  EM algorithm  simulated annealing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号