首页 | 本学科首页   官方微博 | 高级检索  
     

神经网络模型对内隐学习的探索
引用本文:郭秀艳,朱磊. 神经网络模型对内隐学习的探索[J]. 心理科学, 2006, 29(2): 480-484
作者姓名:郭秀艳  朱磊
作者单位:华东师范大学心理学系,上海,200062
基金项目:教育部新世纪优秀人才支持计划项目(批准号为41193002),教育部高等学校全国优秀博士学位论文作者专项资金资助项目(批准号为200309)支持
摘    要:近几年来,研究者们借助人工神经网络模型的方法对内隐学习研究中突出的争论性问题进行了新的探索。针对内隐学习的无意识问题,模拟研究发现确实存在一种无意识的内隐学习,然而这种无意识加工的发生与否要取决于规则的难易程度;针对内隐学习的抽象性问题,人工神经网络模型所主张的分布式概率表征能较好地加以解释。可见,神经网络模型的原理和模拟研究可能为真正地解决内隐学习的无意识性和抽象性等目前争论较多的领域提供一个全新的视角和研究方向。

关 键 词:无意识  抽象性  分布式概率表征

Neural Network Modeling Approach to Implicit Learning
Guo Xiuyan,Zhu Lei. Neural Network Modeling Approach to Implicit Learning[J]. Psychological Science, 2006, 29(2): 480-484
Authors:Guo Xiuyan  Zhu Lei
Affiliation:Department of Psychology, East China Normal University, Shanghai, 200062
Abstract:Many researchers have explored some controversial issues about implicit learning by neural network modeling approach in resent years.Is implicit learning a kind of unconscious processing? Can we acquire abstract rules during implicit learning? When a neural network is used to model the way by which people conduct implicit learning task,the simulation results give a sound explanation about these questions.It reveals that implicit learning is an unconscious processing and whether it happens or not relies on the difficulty of rules which are needed to learn.It also reveals that what subjects acquire during implicit learning is not abstract rules or fragment knowledge,but a distributed representation. Maybe,in the future,neural network modeling can be used to provide more and more information about implicit learning.
Keywords:unconsciousness  abstract  distributed probability  representation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号