Duality for Lattice-Ordered Algebras and for Normal Algebraizable Logics |
| |
Authors: | Hartonas Chrysafis |
| |
Affiliation: | (1) School of Cognitive and Computing Sciences (COGS), University of Sussex at Brighton, Falmer, Brighton, BN1 9QH, UK |
| |
Abstract: | Part I of this paper is developed in the tradition of Stone-type dualities, where we present a new topological representation for general lattices (influenced by and abstracting over both Goldblatt's [17] and Urquhart's [46]), identifying them as the lattices of stable compact-opens of their dual Stone spaces (stability refering to a closure operator on subsets). The representation is functorial and is extended to a full duality.In part II, we consider lattice-ordered algebras (lattices with additional operators), extending the Jónsson and Tarski representation results [30] for Boolean algebras with Operators. Our work can be seen as developing, and indeed completing, Dunn's project of gaggle theory [13, 14]. We consider general lattices (rather than Boolean algebras), with a broad class of operators, which we dubb normal, and which includes the Jónsson-Tarski additive operators. Representation of l-algebras is extended to full duality.In part III we discuss applications in logic of the framework developed. Specifically, logics with restricted structural rules give rise to lattices with normal operators (in our sense), such as the Full Lambek algebras (F L-algebras) studied by Ono in [36]. Our Stone-type representation results can be then used to obtain canonical constructions of Kripke frames for such systems, and to prove a duality of algebraic and Kripke semantics for such logics. |
| |
Keywords: | Stone duality lattice-ordered algebras substructural logics |
本文献已被 SpringerLink 等数据库收录! |
|