首页 | 本学科首页   官方微博 | 高级检索  
     


Abstract: Parameter Influence In Structural Equation Models
Authors:Taehun Lee  Robert MacCallum
Affiliation:University of North Carolina at Chapel Hill
Abstract:In applications of SEM, investigators obtain and interpret parameter estimates that are computed so as to produce optimal model fit in the sense that the obtained model fit would deteriorate to some degree if any of those estimates were changed. This property raises a question: to what extent would model fit deteriorate if parameter estimates were changed? And which parameters have the greatest influence on model fit? This is the idea of parameter influence. The present paper will cover two approaches to quantifying parameter influence. Both are based on the principle of likelihood displacement (LD), which quantifies influence as the discrepancy between the likelihood under the original model and the likelihood under the model in which a minor perturbation is imposed (Cook, 1986 Cook, R. D. 1986. Assessment of local influence. Journal of the Royal Statistical Society. Series B (Methodological)., 48: 133169. [Crossref], [Web of Science ®] [Google Scholar]). One existing approach for quantifying parameter influence is a vector approach (Lee &; Wang, 1996 Lee, S-Y. and Wang, S. J. 1996. Sensitivity analysis of structural equation models. Psychometrika, 61: 93108. [Crossref], [Web of Science ®] [Google Scholar]) that determines a vector in the parameter space such that altering parameter values simultaneously in this direction will cause maximum change in LD. We propose a new approach, called influence mapping for single parameters, that determines the change in model fit under perturbation of a single parameter holding other parameter estimates constant. An influential parameter is defined as one that produces large change in model fit under minor perturbation. Figure 1 illustrates results from this procedure for three different parameters in an empirical application. Flatter curves represent less influential parameters. Practical implications of the results are discussed. The relationship with statistical power in structural equation models is also discussed.
FIGURE 1 Influence mapping for single parameters.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号