首页 | 本学科首页   官方微博 | 高级检索  
     


The tunneling method for global optimization in multidimensional scaling
Authors:Patrick J. F. Groenen  Willem J. Heiser
Affiliation:(1) Department of Data Theory, Faculty of Social and Behavioural Sciences, Leiden University, The Netherlands
Abstract:This paper focuses on the problem of local minima of the STRESS function. It turns out that unidimensional scaling is particularly prone to local minima, whereas full dimensional scaling with Euclidean distances has a local minimum that is global. For intermediate dimensionality with Euclidean distances it depends on the dissimilarities how severe the local minimum problem is. For city-block distances in any dimensionality many different local minima are found. A simulation experiment is presented that indicates under what conditions local minima can be expected. We introduce the tunneling method for global minimization, and adjust it for multidimensional scaling with general Minkowski distances. The tunneling method alternates a local search step, in which a local minimum is sought, with a tunneling step in which a different configuration is sought with the same STRESS as the previous local minimum. In this manner successively better local minima are obtained, and experimentation so far shows that the last one is often a global minimum.This paper is based on the 1994 Psychometric Society's outstanding thesis award of the first author. The authros would like to thank Robert Tijssen of the CWTS Leiden for kindly making available the co-citation data of the Psychometric literature. This paper is an extended version of the paper presented at the Annual Meeting of the Psychometric Society at Champaign-Urbana, Illin., June 1994.
Keywords:multidimensional scaling  iterative majorization  global optimization  tunneling method
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号