首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian modeling of measurement error in predictor variables using item response theory
Authors:Jean-Paul?Fox  mailto:Fox@edte.utwente.nl"   title="  Fox@edte.utwente.nl"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Cees?A.?W.?Glas
Affiliation:(1) Department of Educational Measurement and Data Analysis, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Abstract:
It is shown that measurement error in predictor variables can be modeled using item response theory (IRT). The predictor variables, that may be defined at any level of an hierarchical regression model, are treated as latent variables. The normal ogive model is used to describe the relation between the latent variables and dichotomous observed variables, which may be responses to tests or questionnaires. It will be shown that the multilevel model with measurement error in the observed predictor variables can be estimated in a Bayesian framework using Gibbs sampling. In this article, handling measurement error via the normal ogive model is compared with alternative approaches using the classical true score model. Examples using real data are given.This paper is part of the dissertation by Fox (2001) that won the 2002 Psychometric Society Dissertation Award.
Keywords:classical test theory  Gibbs sampler  item response theory  hierarchical linear models  Markov Chain Monte Carlo  measurement error  multilevel model  multilevel IRT  two-parameter normal ogive model
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号