首页 | 本学科首页   官方微博 | 高级检索  
     


Robust Structural Equation Modeling with Missing Data and Auxiliary Variables
Authors:Ke-Hai Yuan  Zhiyong Zhang
Affiliation:1. Department of Psychology, University of Notre Dame, Notre Dame, IN, 46556, USA
Abstract:The paper develops a two-stage robust procedure for structural equation modeling (SEM) and an R package rsem to facilitate the use of the procedure by applied researchers. In the first stage, M-estimates of the saturated mean vector and covariance matrix of all variables are obtained. Those corresponding to the substantive variables are then fitted to the structural model in the second stage. A sandwich-type covariance matrix is used to obtain consistent standard errors (SE) of the structural parameter estimates. Rescaled, adjusted as well as corrected and F-statistics are proposed for overall model evaluation. Using R and EQS, the R package rsem combines the two stages and generates all the test statistics and consistent SEs. Following the robust analysis, multiple model fit indices and standardized solutions are provided in the corresponding output of EQS. An example with open/closed book examination data illustrates the proper use of the package. The method is further applied to the analysis of a data set from the National Longitudinal Survey of Youth 1997 cohort, and results show that the developed procedure not only gives a better endorsement of the substantive models but also yields estimates with uniformly smaller standard errors than the normal-distribution-based maximum likelihood.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号