首页 | 本学科首页   官方微博 | 高级检索  
     


The precision of velocity discrimination across spatial frequency
Authors:Yue Chen  Harold E. Bedell  Laura J. Frishman
Affiliation:1. gHarvard University, Cambridge, Massachusetts
2. College of Optometry, University of Houston, 77024-6052, Houston, TX
Abstract:The precision of velocity coding for moving stimuli of different spatial frequencies was assessed by measuring velocity discrimination thresholds for a 1-c/deg grating paired with a grating whose spatial frequency ranged from 0.25 to 4 c/deg and for grating pairs of the same spatial frequency (0.25, 1, and 4 c/deg). The gratings always moved upward, with velocities ranging from 0.5 to 16 deg/sec, Velocity discrimination was as precise for stimuli that varied in spatial frequency by: ±2 octaves (0.25 vs. 1 c/deg and 4 vs. 1 c/deg) as for stimuli of the same spatial frequency, for specific ranges of velocity that depended on the spatial and, therefore, the temporal frequencies of the stimuli. Compared with a 1-c/deg grating, the perceived velocity of 4-c/deg gratings was about 1.3 times faster and that of 0.25-c/deg gratings was about 1.3 times slower. Although these perceived velocity biases imply variation of velocity-signal processing among spatial frequency channels, the discrimination results indicate that the motion-sensing system can compare signals across different spatial frequency channels to make fine velocity discrimination within appropriate temporal frequency limits.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号