The bow and sequential effects in absolute identification |
| |
Authors: | R. Duncan Luce Robert M. Nosofsky David M. Green Albert F. Smith |
| |
Affiliation: | 1. Laboratory of Psychophysics, Harvard University, 02138, Cambridge, Massachusetts
|
| |
Abstract: | The bow and sequential effects in absolute identification are investigated in this paper by following two strategies: (1) Experiments are performed in which sequential dependencies in signal presentations are manipulated, and 12) analyses are conducted (some of which are largely free of model-specific assumptions) which bear directly on the question of the origin of the sequential effects. The main result of the study is that absolute identification performance is greatly improved in a design in which each signal lies close to the preceding signal presented, even though the entire range of signals used is the same as in a random presentation design. This finding is consistent with the attention-band model of Luce, Green, and Weber (1976) and rejects hypotheses that suggest that the variability in the signal representation in absolute identification is a function solely of the range of signals being used. However, nonparametric analyses of sequential response errors show that a plausible assumption concerning the trial by-trial movement of the attention band provides an incomplete explanation of Seluential effects in absolute identification. These results are far better explained in terms of systematic shifts of category boundaries in a Thurstonian model, as suggested by Purks, Callahan, Braida, and Durlach (1980). Experiments are also performed which suggest that memory decay is not the major factor accounting for the bow effect in absolute identification. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|