首页 | 本学科首页   官方微博 | 高级检索  
     


A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the metropolis-hastings algorithm
Authors:Gerhard Arminger  Bengt O. Muthén
Affiliation:1. Department of Economics, FB6, Bergische Universit?t—GH Wuppertal, D-42097, Wuppertal, Germany
2. University of California, Los Angeles
3. Graduate School of Education & Information Studies, USA
Abstract:Nonlinear latent variable models are specified that include quadratic forms and interactions of latent regressor variables as special cases. To estimate the parameters, the models are put in a Bayesian framework with conjugate priors for the parameters. The posterior distributions of the parameters and the latent variables are estimated using Markov chain Monte Carlo methods such as the Gibbs sampler and the Metropolis-Hastings algorithm. The proposed estimation methods are illustrated by two simulation studies and by the estimation of a non-linear model for the dependence of performance on task complexity and goal specificity using empirical data.
Keywords:Gibbs Sampler  LISREL model  Metropolis-Hastings algorithm  Non-linear functions of latent regressors
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号