摘 要: | 双因子模型假设测验考察一个一般因子和多个组因子,符合很多教育和心理测验的因素结构。“维度缩减”方法将参数估计中多维积分计算化简为多个迭代二维积分,是双因子模型的重要特征。本文针对考察多级评分项目的计算机化自适应测验,首先推导双因子等级反应模型下Fisher信息量的计算,然后推导“维度缩减”方法在项目选择方法中的应用,最后在低、中、高双因子模式题库中比较D-优化方法、后验加权Fisher信息D优化方法(PDO)、后验加权Kullback-Leibler方法(PKL)、连续熵(CEM)和互信息(MI)方法在能力估计的相关、均方根误差、绝对值偏差和欧氏距离的表现。模拟研究表明:(1)双因子模式越强,即一般因子和组因子在项目上的区分度的差异越小,一般因子估计精度降低,组因子估计精度增加,整体能力的估计精度提高;(2)相同实验条件下,连续熵方法的测量精度最高,PKL方法的能力估计精度最低,其它方法的测量精度没有显著差异。
|