首页 | 本学科首页   官方微博 | 高级检索  
     


Combinatory Logic and the Semantics of Substructural Logics
Authors:Lou Goble
Affiliation:(1) Department of Philosophy, Willamette University, Salem, Oregon 97301, USA
Abstract:
The results of this paper extend some of the intimate relations that are known to obtain between combinatory logic and certain substructural logics to establish a general characterization theorem that applies to a very broad family of such logics. In particular, I demonstrate that, for every combinator X, if LX is the logic that results by adding the set of types assigned to X (in an appropriate type assignment system, TAS) as axioms to the basic positive relevant logic BT, then LX is sound and complete with respect to the class of frames in the Routley-Meyer relational semantics for relevant and substructural logics that meet a first-order condition that corresponds in a very direct way to the structure of the combinator X itself. Presented by Rob Goldblatt
Keywords:Substructural logics  combinatory logic  Routley-Meyer relational semantics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号