首页 | 本学科首页   官方微博 | 高级检索  
     


The Pentus Theorem for Lambek Calculus with Simple Nonlogical Axioms
Authors:Maria?Bulińska  author-information"  >  author-information__contact u-icon-before"  >  mailto:bulma@uwm.edu.pl"   title="  bulma@uwm.edu.pl"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Faculty of Mathematics and Computer Science, University of Warmia and Mazury, żołnierska 14, Olsztyn, Poland
Abstract:The Lambek calculus introduced in Lambek [6] is a strengthening of the type reduction calculus of Ajdukiewicz [1]. We study Associative Lambek Calculus L in Gentzen style axiomatization enriched with a finite set Γ of nonlogical axioms, denoted by L(Γ).It is known that finite axiomatic extensions of Associative Lambek Calculus generate all recursively enumerable languages (see Buszkowski [2]). Then we confine nonlogical axioms to sequents of the form pq, where p and q are atomic types. For calculus L(Γ) we prove interpolation lemma (modifying the Roorda proof for L [10]) and the binary reduction lemma (using the Pentus method [9] with modification from [3]). In consequence we obtain the weak equivalence of the Context-Free Grammars and grammars based on L(Γ).
Keywords:Lambek  calculus  context-free  grammar
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号