首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 278 毫秒
1.
N J Wade  C M de Weert 《Perception》1986,15(4):419-434
Five experiments are reported in which the aftereffect paradigm was applied to binocular rivalry. In the first three experiments rivalry was between a vertical grating presented to the left eye and a horizontal grating presented to the right eye. In the fourth experiment the rivalry stimuli consisted of a rotating sectored disc presented to the left eye and a static concentric circular pattern presented to the right. In experiment 5 rivalry was between static radiating and circular patterns. The predominance durations were systematically influenced by direct (same eye) and indirect (interocular) adaptation in a manner similar to that seen for spatial aftereffects. Binocular adaptation produced an aftereffect that was significantly smaller than the direct aftereffect, but not significantly different from the indirect one. A model is developed to account for the results; it involves two levels of binocular interaction in addition to monocular channels. It is suggested that the site of spatial aftereffects is the same as that for binocular rivalry, rather than sequentially prior.  相似文献   

2.
Thirty-two Ss were required to estimate the apparent motion of stationary vertical lines viewed against a background of moving vertical lines when both patterns were seen by the same eye (monoptic conditions) or the center pattern was seen by one eye and the surrounds by the other eye (dichoptic conditions). The stationary lines appeared to be moving from right to left as the surrounds moved left to right. The simultaneous motion contrast found under monoptic conditions was maximal when the center pattern and the surrounds were the same color and was reduced when they differed in color. The surrounds had limited influence on the apparent motion of the center section under dichoptic condition, and the color relationship was no longer important. Related color selectivity has been reported for the motion aftereffect (successive motion contrast), and both sets of data can be attributed to inlaibitory interaction (simultaneous in one case and successive in the other) among neural detectors tuned to wavelength as well as the direction of image motion.  相似文献   

3.
Displays yielding edges visible at sites where the visual stimulus was homogeneous (subjective contours) as well as with edges defined by spatial discontinuities in luminance (real contours) were used to induce the tilt aftereffect. Under monoptic conditions, the aftereffect was larger when the inspection and test edges were shown in the same colored light than when they were shown in different colored lights. Under dichoptic conditions (display of inspection edges to one eye and test edges to the other eye), the aftereffect was reduced in size and it was no longer selective to the color relationship between the inspection and test stimuli. Similar results were obtained with subjective and real contours. In the recent literature, subjective contours have been treated as products of cognitive and inferential operations, whereas neural edge detectors have been implicated in the perception of real contours. The present data suggest, however, the need for caution in attributing the perception of real and subjective contours to fundamentally different processes.  相似文献   

4.
Summary Observers looked monocularly into a tunnel, with gratings on the left and right sides drifting toward the head. An exposure period was followed by a test with fixed gratings. With fixation points, left and right retinal fields could be stimulated selectively. When exposure and test were on the same retinal fields, but fixation was on opposite sides of the tunnel during exposure and test periods, aftereffects of retinal sweep and of perceived looming were in opposite directions. The two effects tended to cancel, yielding no perceived aftereffect. When they did occur, aftereffects in the retinal and the looming directions were equally likely. Cancellation was significantly more likely in the experimental conditions than in the control, when fixation always remained on the same side. When areas of retinal stimulation in the exposure and test periods did not overlap, cancellation was less frequent and aftereffects of looming were more frequent. Results were not significantly different for left and right visual fields, indicating that cortical vs. subcortical OKN pathways do not influence the illusion. Vection resulted for 16 of 20 observers under one or another of our conditions.  相似文献   

5.
Induced motion is the illusory motion of a static stimulus in the opposite direction to a moving stimulus. Two types of induced motion have been distinguished: (a) when the moving stimulus is distant from the static stimulus and undergoes overall displacement, and (b) when the moving stimulus is pattern viewed within fixed boundaries that abut the static stimulus. Explanations of the 1st type of induced motion refer to mediating phenomena, such as vection, whereas the 2nd type is attributed to local processing by motion-sensitive neurons. The present research was directed to a display that elicited induced rotational motion with the characteristics of both types of induced motion: the moving stimulus lay within fixed boundaries, but the inducing and induced stimuli were distant from each other. The author investigated the properties that distinguished the two types of induced motion. In 3 experiments, induced motion persisted indefinitely, interocular transfer of the aftereffect of induced motion was limited to about 20%, and the time-course of the aftereffect of induced motion could not be attributed to vection. Those results were consistent with fixed-boundary induced motion. However, they could not be explained by local processing. Instead, the results might reflect the detection of object motion within a complex flow-field that resulted from the observer's motion.  相似文献   

6.
After observation of a stimulus composed of a top grating with large bar widths (low spatial frequency) and a bottom grating of narrow lines (high spatial frequency), a subsequently presented test grating of medium bar width appears to have a higher spatial frequency on the top half than on the bottom. Although this size aftereffect can be obtained dichoptically, this does not necessarily imply a central locus, since retinal input from the adapted eye could produce the effect. Ss were tested for the aftereffect in the adapted eye and for interocular transfer with and without pressure blinding the adapted eye. In this last condition, input from the adapted eye cannot reach the cortex. However, the aftereffect was equally present under all three conditions. This result suggests that size and frequency adaptation have a central locus.  相似文献   

7.
Vreven D  Berge J 《Perception》2007,36(12):1769-1778
Glass patterns are visual stimuli used here to study how local orientation signals are spatially integrated into global pattern perception. We measured a form aftereffect from adaptation to both static and dynamic Glass patterns and calculated the amount of interocular transfer to determine the binocularity of the detectors responsible for the perception of global structure. Both static and dynamic adaptation produced significant form aftereffects and showed a very high degree of interocular transfer, suggesting that Glass-pattern perception involves cortical processing beyond primary visual cortex. Surprisingly, dynamic adaptation produced significantly greater interocular transfer than static adaptation. Our results suggest a functional interaction between local orientation processing and global motion processing that contributes to form perception.  相似文献   

8.
K A Stevens 《Perception》1983,12(4):491-500
Subjective contours, according to one theory, outline surfaces that are apparently interposed between the viewer and background (because of the disruption of background figures, sudden termination of lines, and other interposition 'cues') but are not explicitly outlined by intensity discontinuities. This theory predicts that if the cues are not interpreted as evidence of interposition, no intervening surface need be postulated, hence no subjective contours would be seen. This prediction, however, is difficult to test because observers normally interpret the cues as interposition evidence and normally see the subjective contours. Tests are reported on a patient with visual agnosia who is unable to make the usual interposition interpretations and unable to see subjective contours, but has normal ability to interpret standard visual illusions, stereograms, and in particular, stereogram versions of the standard subjective contour figures, which elicit to him strong subjective edges in depth (corresponding to the subjective contours viewed in the monocular versions of the figures.  相似文献   

9.
A number of the well-known visual after-effects of adaptation exhibit interocular transfer, so that presentation of an adaptation figure to one eye produces a temporary change in the performance of the nonadapted eye. This outcome is usually attributed to the involvement of binocular visual neurons that respond to stimulation of either eye. The fact that interocular transfer is incomplete (i.e., the transferred aftereffect is smaller in magnitude than that induced and measured in the same eye) is routinely cited as evidence for the involvement of monocular neurons. This article critically examines these two interpretations, which are developed in terms of a neural model of interocular transfer. No evidence, logical or empirical, was obtained for rejecting the model. Our analysis further shows that the model must assume some type of pooling process that operates over all tested neurons, both adapted and unadapted. Finally, general implications of the interocular transfer model are discussed, the aim being to delimit the conclusions that may be drawn from interocular transfer experiments.  相似文献   

10.
Aghdaee SM 《Perception》2005,34(2):155-162
When a single, moving stimulus is presented in the peripheral visual field, its direction of motion can be easily distinguished, but when the same stimulus is flanked by other similar moving stimuli, observers are unable to report its direction of motion. In this condition, known as 'crowding', specific features of visual stimuli do not access conscious perception. The aim of this study was to investigate whether adaptation to spiral motion is preserved in crowding conditions. Logarithmic spirals were used as adapting stimuli. A rotating spiral stimulus (target spiral) was presented, flanked by spirals of the same type, and observers were adapted to its motion. The observers' task was to report the rotational direction of a directionally ambiguous motion (test stimulus) presented afterwards. The directionally ambiguous motion consisted of a pair of spirals flickering in counterphase, which were mirror images of the target spiral. Although observers were not aware of the rotational direction of the target and identified it at chance levels, the direction of rotation reported by the observers during the test phase (motion aftereffect) was contrarotational to the direction of the adapting spiral. Since all contours of the adapting and test stimuli were 90 degrees apart, local motion detectors tuned to the directions of the mirror-image spiral should fail to respond, and therefore not adapt to the adapting spiral. Thus, any motion aftereffect observed should be attributed to adaptation of global motion detectors (ie rotation detectors). Hence, activation of rotation-selective cells is not necessarily correlated with conscious perception.  相似文献   

11.
In the present study we investigated lateralization of color reversal learning in pigeons. After monocular acquisition of a simple color discrimination with either the left or right eye, birds were tested in a serial reversal procedure. While there was only a slight and non-significant difference in choice accuracy during original color discrimination, a stable superiority of birds using the right eye emerged in serial reversals. Both groups showed a characteristic ‘learning-to-learn’ effect, but right-eyed subjects improved faster and reached a lower asymptotic error rate. Subsequent testing for interocular transfer demonstrated a difference between pre- and post-shift choice accuracy in pigeons switching from right to left eye but not vice versa. This can be accounted for by differences in maximum performance using either the left or right eye along with an equally efficient but incomplete interocular transfer in both directions. Detailed analysis of the birds’ response patterns during serial reversals revealed a preference for the right of two response keys in both groups. This bias was most pronounced at the beginning of a session. It decreased within sessions, but became more pronounced in late reversals, thus indicating a successful strategy for mastering the serial reversal task. Interocular transfer of response patterns revealed an unexpected asymmetry. Birds switching from right to left eye continued to prefer the right side, whereas pigeons shifting from left to right eye were now biased towards the left side. The results suggest that lateralized performance during reversal learning in pigeons rests on a complex interplay of learning about individual stimuli, stimulus dimensions, and lateralized response strategies. Received: 4 June 1999 / Accepted after revision: 18 August 1999  相似文献   

12.
We used visual search to explore whether attention could be guided by Kanizsa-type subjective contours and by subjective contours induced by line ends. Unlike in previous experiments, we compared search performance with subjective contours against performance with real, luminance contours, and we had observers search for orientations or shapes produced by subjective contours, rather than searching for the presence of the contours themselves. Visual search for one orientation or shape among distractors of another orientation or shape was efficient when the items were defined by luminance contours. Search was much less efficient among items defined by Kanizsa-type subjective contours. Search remained efficient when the items were defined by subjective contours induced by line ends. The difference between Kanizsa-type subjective contour and subjective contours induced by line ends is consistent with physiological evidence suggesting that the brain mechanisms underlying the perception of these two kinds of subjective contours may be different.  相似文献   

13.
Visual feature discrimination tasks in pigeons reveal a right eye/left hemisphere dominance at the population level. Anatomical studies and lesion data show this visual lateralization to be related to asymmetries of the tectofugal system, which ascends from the tectum over the n. rotundus to the forebrain. Anatomically, this system is characterized by numerous morphological and connectional asymmetries which result in a bilateral visual representation in the dominant left hemisphere and a mostly contralateral representation in the subdominant right hemisphere. Ontogenetically, visual lateralization starts with an asymmetrical embryonic position within the egg, which leads to asymmetries of light stimulation. Differences in exposure to light stimulation between the eyes result in activity differences between the ascending tectofugal pathways of the left and the right hemisphere, which are transcribed during a critical time span into morphological asymmetries. The asymmetries established after this transient period finally start to determine the lateralized processes of the visual system for the entire life span of the individual. We now can show that these anatomical lateralizations are accompanied by asymmetries of interocular transfer, which enable a faster shift of learned color cues from the dominant right to the left eye than vice versa. In summary, our data provide evidence that cerebral asymmetries are based both on "static" anatomical and on "dynamic" process-dependent principles.  相似文献   

14.
A horizontally moving sound was presented to an observer seated in the center of an anechoic chamber. The sound, either a 500-Hz low-pass noise or a 6300-Hz high-pass noise, repeatedly traversed a semicircular arc in the observer's front hemifield at ear level (distance: 1.5 m). At 10-sec intervals this adaptor was interrupted, and a 750-msec moving probe (a 500-Hz low-pass noise) was presented from a horizontal arc 1.6 m in front of the observer. During a run, the adaptor was presented at a constant velocity (-200 degrees to +200 degrees/sec), while probes with velocities varying from -10 degrees to +10 degrees/sec were presented in a random order. Observers judged the direction of motion (left or right) of each probe. As in the case of stimuli presented over headphones (Grantham & Wightman, 1979), an auditory motion aftereffect (MAE) occurred: subjects responded "left" to probes more often when the adaptor moved right than when it moved left. When the adaptor and probe were spectrally the same, the MAE was greater than when they were from different spectral regions; the magnitude of this difference depended on adaptor speed and was subject-dependent. It is proposed that there are two components underlying the auditory MAE: (1) a generalized bias to respond that probes move in the direction opposite to that of the adaptor, independent of their spectra; and (2) a loss of sensitivity to the velocity of moving sounds after prolonged exposure to moving sounds having the same spectral content.  相似文献   

15.
Research has shown that spatial memory for moving targets is often biased in the direction of implied momentum and implied gravity, suggesting that representations of the subjective experiences of these physical principles contribute to such biases. The present study examined the association between these spatial memory biases. Observers viewed targets that moved horizontally from left to right before disappearing or viewed briefly shown stationary targets. After a target disappeared, observers indicated the vanishing position of the target. Principal components analysis revealed that biases along the horizontal axis of motion loaded on separate components from biases along the vertical axis orthogonal to motion. The findings support the hypothesis that implied momentum and implied gravity biases have unique influences on spatial memory.  相似文献   

16.
It is well established that motion aftereffects (MAEs) can show interocular transfer (IOT); that is, motion adaptation in one eye can give a MAE in the other eye. Different quantification methods and different test stimuli have been shown to give different IOT magnitudes, varying from no to almost full IOT. In this study, we examine to what extent IOT of the dynamic MAE (dMAE), that is the MAE seen with a dynamic noise test pattern, varies with velocity of the adaptation stimulus. We measured strength of dMAE by a nulling method. The aftereffect induced by adaptation to a moving random-pixel array was compensated (nulled), during a brief dynamic test period, by the same kind of motion stimulus of variable luminance signal-to-noise ratio (LSNR). The LSNR nulling value was determined in a Quest-staircase procedure. We found that velocity has a strong effect on the magnitude of IOT for the dMAE. For increasing speeds from 1.5 deg s(-1) to 24 deg s(-1) average IOT values increased about linearly from 18% to 63% or from 32% to 83%, depending on IOT definition. The finding that dMAEs transfer to an increasing extent as speed increases, suggests that binocular cells play a more dominant role at higher speeds.  相似文献   

17.
A single experiment investigated how younger (aged 18-32 years) and older (aged 62-82 years) observers perceive 3D object shape from deforming and static boundary contours. On any given trial, observers were shown two smoothly-curved objects, similar to water-smoothed granite rocks, and were required to judge whether they possessed the "same" or "different" shape. The objects presented during the "different" trials produced differently-shaped boundary contours. The objects presented during the "same" trials also produced different boundary contours, because one of the objects was always rotated in depth relative to the other by 5, 25, or 45 degrees. Each observer participated in 12 experimental conditions formed by the combination of 2 motion types (deforming vs. static boundary contours), 2 surface types (objects depicted as silhouettes or with texture and Lambertian shading), and 3 angular offsets (5, 25, and 45 degrees). When there was no motion (static silhouettes or stationary objects presented with shading and texture), the older observers performed as well as the younger observers. In the moving object conditions with shading and texture, the older observers' performance was facilitated by the motion, but the amount of this facilitation was reduced relative to that exhibited by the younger observers. In contrast, the older observers obtained no benefit in performance at all from the deforming (i.e., moving) silhouettes. The reduced ability of older observers to perceive 3D shape from motion is probably due to a low-level deterioration in the ability to detect and discriminate motion itself.  相似文献   

18.
D R Bradley  S M Mates 《Perception》1985,14(5):645-653
According to a number of theories subjective contours arise from brightness contrast and/or assimilation. The apparent brightness gradients generated by these effects are assumed to give rise to the perception of contours delineating the gradients. A study is reported in which naive observers were shown a subjective contour display and asked to report what they saw. They were then asked to judge whether the center or the surround of the display appeared brighter. Subjects whose reports indicated that they had seen the subjective contour figure showed an overwhelming preference for the center of the display being brighter than the surround. However, subjects who did not see the subjective contour figure did not differ significantly in their selection of the center over the surround. This finding presents difficulties for any theory which derives subjective contours from the apparent brightness difference.  相似文献   

19.
Psychophysical techniques were used to examine how subpopulations of visual neurons varying in their ocular dominance interacted in determining performance on a visual task. Using an asymmetric alternating adaptation of the left and right eyes, we manipulated the sensitivity of monocularly driven neurons while keeping the sensitivity of binocularly driven neurons constant. Relative threshold elevations were measured in the left eye, right eye, and both eyes of five observers following different ratios of alternating adaptation. It was found that whereas monocularly measured aftereffects varied monotonically as a function of the adaptation duration of the measured eye, the magnitude of the binocularly measured aftereffect remained constant regardless of how the adaptation was divided between the two eyes. This suggests that neurons differing in their ocular dominance pool their activity in determining sensitivity to a test target.  相似文献   

20.
In this paper, the auditory motion aftereffect (aMAE) was studied, using real moving sound as both the adapting and the test stimulus. The sound was generated by a loudspeaker mounted on a robot arm that was able to move quietly in three-dimensional space. A total of 7 subjects with normal hearing were tested in three experiments. The results from Experiment 1 showed a robust and reliable negative aMAE in all the subjects. After listening to a sound source moving repeatedly to the right, a stationary sound source was perceived to move to the left. The magnitude of the aMAE tended to increase with adapting velocity up to the highest velocity tested (20 degrees/sec). The aftereffect was largest when the adapting and the test stimuli had similar spatial location and frequency content. Offsetting the locations of the adapting and the test stimuli by 20 degrees reduced the size of the effect by about 50%. A similar decline occurred when the frequency of the adapting and the test stimuli differed by one octave. Our results suggest that the human auditory system possesses specialized mechanisms for detecting auditory motion in the spatial domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号