首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
When a moving target vanishes abruptly, participants judge its final position as being ahead of its actual final position, in the direction of motion (representational momentum; Freyd & Finke, 1984). In the present study, we presented illusory motion and examined whether or not forward displacement was affected by the perceived direction and speed of the target. Experiments 1A and 1B showed that an illusory direction of movement of a target was perceived, and Experiment 2 showed that an illusory speed of a moving target was observed. However, neither the direction nor the magnitude of forward displacement was affected by these illusions. Therefore, it was suggested that the mechanism underlying forward displacement (or some extrapolation processing) uses different motion signals than does the perceptual mechanism.  相似文献   

2.
Stationary objects in a stereogram can appear to move when viewed with lateral head movements. This illusory motion can be explained by the motion-distance invariance hypothesis, which states that illusory motion covaries with perceived depth in accordance with the geometric relationship between the position of the stereo stimuli and the head. We examined two predictions based on the hypothesis. In Experiment 1, illusory motion was studied while varying the magnitude of binocular disparity and the magnitude of lateral head movement, holding viewing distance constant. In Experiment 2, illusory motion was studied while varying binocular disparity and viewing distance, holding magnitude of head movement constant. Ancillary measures of perceived depth, perceived viewing distance, and perceived magnitude of lateral head movement were also obtained. The results from the two experiments show that the extent of illusory motion varies as a function of perceived depth, supporting the motion-distance invariance hypothesis. The results also show that the extent of illusory motion is close to that predicted from the geometry in crossed disparity conditions, whereas it is greater than the predicted motion in uncrossed disparity conditions. Furthermore, predictions based on perceptual variables were no more accurate than predictions based on geometry.  相似文献   

3.
Selective attention enhances visual information processing, as measured by behavioral performance and neural activity. However, little is known about its effects on subjective experience. Here, we investigated the effect of transient (exogenous) attention on the appearance of visual motion, using a psychophysical procedure that directly measures appearance and controls for response bias. Observers viewed pairs of moving dot patterns and reported the motion direction of the more coherent pattern. Directing attention (via a peripheral precue) to a stimulus location increased its perceived coherence level and improved performance on a direction discrimination task. In a control experiment, we ruled out response bias by lengthening the time interval between the cue and the stimuli, so that the effect of transient attention could no longer be exerted. Our results are consistent with those of neurophysiological studies showing that attention modulates motion processing and provide evidence of a subjective perceptual correlate of attention, with a concomitant effect on performance.  相似文献   

4.
To examine the relationship between visual motion processing for perception and pursuit, we measured the pursuit eye-movement and perceptual responses to the same complex-motion stimuli. We show that humans can both perceive and pursue the motion of line-figure objects, even when partial occlusion makes the resulting image motion vastly different from the underlying object motion. Our results show that both perception and pursuit can perform largely accurate motion integration, i.e. the selective combination of local motion signals across the visual field to derive global object motion. Furthermore, because we manipulated perceived motion while keeping image motion identical, the observed parallel changes in perception and pursuit show that the motion signals driving steady-state pursuit and perception are linked. These findings disprove current pursuit models whose control strategy is to minimize retinal image motion, and suggest a new framework for the interplay between visual cortex and cerebellum in visuomotor control.  相似文献   

5.
Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adaptation to one grating prior to the presentation of both gratings. Reflexive eye movements tracked the vector average of both gratings (pattern motion) even though perceptual responses followed one motion direction exclusively (component motion). Observers almost never perceived pattern motion. This dissociation implies the existence of visual-motion signals that guide eye movements in the absence of a corresponding conscious percept.  相似文献   

6.
Five experiments were conducted to examine how perceived direction of motion is influenced by aspects of shape of a moving object such as symmetry and elongation. Random polygons moving obliquely were presented on a computer screen and perceived direction of motion was measured. Experiments 1 and 2 showed that a symmetric object moving off the axis of symmetry caused motion to be perceived as more aligned with the axis than it actually was. However, Experiment 3 showed that motion did not influence perceived orientation of symmetry axis. Experiment 4 revealed that symmetric shapes resulted in faster judgments on direction of motion than asymmetric shapes only when the motion is along the axis. Experiment 5 showed that elongation causes a bias in perceived direction of motion similar to effects of symmetry. Existence of such biases is consistent with the hypothesis that in the course of evolution, the visual system has been adapted to regularities of motion in the animate world.  相似文献   

7.
This study investigated multisensory interactions in the perception of auditory and visual motion. When auditory and visual apparent motion streams are presented concurrently in opposite directions, participants often fail to discriminate the direction of motion of the auditory stream, whereas perception of the visual stream is unaffected by the direction of auditory motion (Experiment 1). This asymmetry persists even when the perceived quality of apparent motion is equated for the 2 modalities (Experiment 2). Subsequently, it was found that this visual modulation of auditory motion is caused by an illusory reversal in the perceived direction of sounds (Experiment 3). This "dynamic capture" effect occurs over and above ventriloquism among static events (Experiments 4 and 5), and it generalizes to continuous motion displays (Experiment 6). These data are discussed in light of related multisensory phenomena and their support for a "modality appropriateness" interpretation of multisensory integration in motion perception.  相似文献   

8.
Motion information available to different sensory modalities can interact at both perceptual and post-perceptual (i.e., decisional) stages of processing. However, to date, researchers have only been able to demonstrate the influence of one of these components at any given time, hence the relationship between them remains uncertain. We addressed the interplay between the perceptual and post-perceptual components of information processing by assessing their influence on performance within the same experimental paradigm. We used signal detection theory to discriminate changes in perceptual sensitivity (d') from shifts in response criterion (c) in performance on a detection (Experiment 1) and a classification (Experiment 2) task regarding the direction of auditory apparent motion streams presented in noise. In the critical conditions, a visual motion distractor moving either leftward or rightward was presented together with the auditory motion. The results demonstrated a significant decrease in sensitivity to the direction of the auditory targets in the crossmodal conditions as compared to the unimodal baseline conditions that was independent of the relative direction of the visual distractor. In addition, we also observed significant shifts in response criterion, which were dependent on the relative direction of the distractor apparent motion. These results support the view that the perceptual and decisional components involved in audiovisual interactions in motion processing can coexist but are largely independent of one another.  相似文献   

9.
Previous work has shown that abrupt visual onsets capture attention. This occurs even with stimuli that are equiluminant with the background, which suggests that the appearance of a new perceptual object, not merely a change in luminance, captures attention. Three experiments are reported in which this work was extended by investigating the possible role of visual motion in attentional capture. Experiment 1 revealed that motion can efficiently guide attention when it is perfectly informative about the location of a visual search target, but that it does not draw attention when it does not predict the target’s position. This result was obtained with several forms of motion, including oscillation, looming, and nearby moving contours. To account for these and other results, we tested anew-object account of attentional capture in Experiment 2 by using a global/local paradigm. When motion segregated a local letter from its perceptual group, the local letter captured attention as indexed by an effect on latency of response to the task-relevant global configuration. Experiment 3 ruled out the possibility that the motion in Experiment 2 captured attention merely by increasing the salience of the moving object. We argue instead that when motion segregates a perceptual element from a perceptual group, a new perceptual object is created, and this event captures attention. Together, the results suggest that motion as such does not capture attention but that the appearance of a new perceptual object does.  相似文献   

10.
An explanation of apparent direction of rotary motion in depth derived from a general theory of perceptual constancy and illusion is proposed with experimental data in its support. Apparent direction of movement is conceived of as exhibiting-perceptual constancy or illusion as a function of apparent direction of orientation m depth for plane objects and apparent relative depth for three-dimensional objects. Apparent reversals of movement direction represent either regular fluctuations between constancy and illusion of direction as a function of valid and invalid stimuli for orientation, or irregular and random fluctuations in their absence. In three preliminary experiments, the apparent movement direction of plane ellipses was investigated as a function of surface pattern information for orientation, and in Experiment I apparent reversals during 20-revolution trials were studied. In Experiment II, apparent movement direction of 3D elliptical V shapes as a function of surface pattern information for relative depth was investigated. In addition to supporting the explanation proposed, the data offer a resolution of a conflict between different theories of apparent reversal of motion in depth.  相似文献   

11.
This study is concerned with two questions regarding the illusory motion of objects that occurs concomitantly with motion of the head. One is whether this illusory concomitant motion, unlike the perception of real motion, is paradoxical in the sense that, although the object appears to move, it does not appear to go anywhere. The second question is whether illusory concomitant motion can be explained by errors in convergence produced by a tendency for the convergence of the eyes to displace in the direction of the resting state of convergence. Both questions receive a negative answer. In Experiment 1, it is shown that the illusory motion perceptually can add to or subtract from apparent motion resulting from real motion. In Experiment 2, it is shown that, for a binocularly viewed object at a near distance, the error in convergence (fixation disparity) is far too small to be an explanation for the illusory object motion associated with a moving head. The results of both experiments support an interpretation of illusory concomitant motion in terms of errors in the apparent distance of the stimulus object and the veridical perception of its direction.  相似文献   

12.
J Allik 《Perception》1992,21(6):731-746
Three different perceptual systems--orientation, motion, and depth--can recover a global perceptual organization from spatially correlated random multielement patterns. In all three cases the global structure composed of random elements is evaluated by mechanisms performing measurements in the energy domain within appropriately defined local space-time areas. The selective increase in energy of one fraction of the elements may dramatically change the whole perceptual organization of the stimulus. In specially devised patterns one and the same element can belong to two or more separate perceptual organizations, the perceptual salience of one of which can be reinforced by a luminance increment of the elements comprising it. If a stimulus provides two different perceptual organizations to which each element could potentially belong, one of four possible solutions of the existing ambiguity will occur: suppression, rivalry, mixture, or parity. Two superimposed global orientation patterns either suppress or dominate over each other but cannot be seen simultaneously or in a mixed form. Characteristic of the depth system is that it allows multiple binocular matchings and parity of possible perceptual solutions. Finally, if a stimulus provides two or more paths along which each element may appear to move, the perceived global motion direction is determined by a mixture of directions of these competing motion paths. Dissimilarities in these ways of resolving ambiguities may be based on different principles defining regularity and coherence of an object in the orientation, motion, and depth domains.  相似文献   

13.
A mask of a face rotated about its vertical axis of symmetry can appear to oscillate rather than rotate. Do stimulus features (e.g., shape) or cognitive factors (e.g., differential familiarity with convex and concave views of faces) explain this new illusion? In Experiment 1, differential familiarity was varied across stimuli by using familiar and unfamiliar objects rotating at 4 rpm and within stimuli by showing the objects upright and inverted. True motion was seen more with unfamiliar objects than with familiar objects and more with an inverted mask than with an upright mask. The results of Experiment 2, which was done with static views, suggest that the upright and inverted masks present similar structure to the visual system. In Experiment 3, the objects were shown rotating at 8 rpm; the results are similar to those of Experiment 1. These experiments favor a differential familiarity account of this illusory motion. Cognitive constraints on perceived motion and perceived rigidity are discussed.  相似文献   

14.
A mask of a face rotated about its vertical axis of symmetry can appear to oscillate rather than rotate. Do stimulus features (e.g., shape) or cognitive factors (e.g., differential familiarity with convex and concave views of faces) explain this new illusion? In Experiment 1, differential familiarity was varied across stimuli by using familiar and unfamiliar objects rotating at 4 rpm and within stimuli by showing the objects upright and inverted. True motion was seen more with unfamiliar objects than with familiar objects and more with an inverted mask than with an upright mask. The results of Experiment 2, which was done with static views, suggest that the upright and inverted masks present similar structure to the visual system. In Experiment 3, the objects were shown rotating at 8 rpm; the results are similar to those of Experiment 1. These experiments favor a differential familiarity account of this illusory motion. Cognitive constraints on perceived motion and perceived rigidity are discussed.  相似文献   

15.
Perceived position depends on many factors, including motion present in a visual scene. Convincing evidence shows that high-level motion perception--which is driven by top-down processes such as attentional tracking or inferred motion--can influence the perceived position of an object. Is high-level motion sufficient to influence perceived position, and is attention to or awareness of motion direction necessary to displace objects' perceived positions? Consistent with previous reports, the first experiment revealed that the perception of motion, even when no physical motion was present, was sufficient to shift perceived position. A second experiment showed that when subjects were unable to identify the direction of a physically present motion stimulus, the apparent locations of other objects were still influenced. Thus, motion influences perceived position by at least two distinct processes. The first involves a passive, preattentive mechanism that does not depend on perceptual awareness; the second, a top-down process that depends on the perceptual awareness of motion direction. Each contributes to perceived position, but independently of the other.  相似文献   

16.
This study explored how motion lines (ML) can contribute to the memory displacement of an object. Three experiments were conducted to examine the memorized position of a target with ML using manual localization tasks, revealing that the reproduced position was biased in the direction implied by the ML. Two further experiments successfully ruled out the possibility that the memory displacement stemmed from a repulsive manual localization tendency, an attention repulsion-like effect, or perceptual illusory displacement of the object. These results indicated that ML trigger anticipation of the future position of the object, resulting in memory displacement.  相似文献   

17.
A static bar is perceived to dynamically extend from a peripheral cue (illusory line motion (ILM)) or from a part of another figure presented in the previous frame (transformational apparent motion (TAM)). We examined whether visibility for the cue stimuli affected these transformational motions. Continuous flash suppression, one kind of dynamic interocular masking, was used to reduce the visibility for the cue stimuli. Both ILM and TAM significantly occurred when the d' for cue stimuli was zero (Experiment 1) and when the cue stimuli were presented at subthreshold levels (Experiment 2). We discuss that higher‐order motion processing underlying TAM and ILM can be weakly but significantly activated by invisible visual information.  相似文献   

18.
We investigated the effect of local texture motion on time-to-contact (TTC) estimation. In Experiment 1, observers estimated the TTC of a looming disk with a spiral texture pattern in a prediction-motion task. Rotation of the spiral texture in a direction causing illusory contraction resulted in a significant TTC overestimation, relative to a condition without texture rotation. This would be consistent with an intrusion of task-irrelevant local upon task-relevant global information. However, illusory expansion did not cause a relative TTC underestimation but rather also a tendency towards overestimation. In Experiment 2, a vertical cylinder moved on the frontoparallel plane. Observers judged its TTC with a finish line. The cylinder was textured with stripes oriented in parallel to its longitudinal axis. It was either not rotating, rotating such that the stripes moved towards the finish line (i.e., in the same direction as the contour), or rotating such that the stripes moved away from the finish line. Both types of texture motion caused TTC overestimation compared to the static condition. Experiment 3 showed that the different effects of task-relevant and task-irrelevant texture motion are not a mere procedural effect of the prediction-motion task. In conclusion, task-irrelevant local motion and global motion are neither averaged in a simple manner nor are they processed independently.  相似文献   

19.
The apparent relative motion of physically stationary objects that frequently occurs as the head is moved in a frontoparallel plane is almost always in the direction expected from the projection into the distal world of the relative motion of the images on the eye. It is hypothesized that this is the result of the perceptual underestimation of the depth between the objects. If a perceptual overestimation of the depth were produced, it was predicted that the apparent relative motion would be in a direction opposite to that expected from the projection of the retinal motions. This prediction was tested using the binocular disparity cue to produce perceptual overestimation of the slant (depth) of a luminous line. In this case, perceived slant was the indicator of perceived depth, and perceived rotation concomitant with the motion of the head was the indicator of perceived relative motion. The results support the prediction and also provide some support for a theoretically derived equation specifying the relation between these two perceptual variables.  相似文献   

20.
Observers' perceptions of the three-dimensional structure of smoothly curved surfaces defined by patterns of image shading were investigated under varying conditions of illumination. In five experiments, observers judged the global orientation and the motion of the simulated surfaces from both static and dynamic patterns of image shading. We found that perceptual performance was more accurate with static than with dynamic displays. Dynamic displays evoked systematic biases in perceptual performance when the surface and the illumination source were simulated as rotating in opposite directions. In these conditions, the surface was incorrectly perceived as rotating in the same direction as the illumination source. Conversely, the orientation of the simulated surfaces was perceived correctly when the frames making up the apparent-motion sequences of the dynamic displays were presented as static images. In Experiment 6, moreover, the results obtained with the computer-generated displays were replicated with solid objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号