首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Recent research has begun to investigate the impact of different formats for rational numbers on the processes by which people make relational judgments about quantitative relations. DeWolf, Bassok, and Holyoak (Journal of Experimental Psychology: General, 144(1), 127–150, 2015) found that accuracy on a relation identification task was highest when fractions were presented with countable sets, whereas accuracy was relatively low for all conditions where decimals were presented. However, it is unclear what processing strategies underlie these disparities in accuracy. We report an experiment that used eye-tracking methods to externalize the strategies that are evoked by different types of rational numbers for different types of quantities (discrete vs. continuous). Results showed that eye-movement behavior during the task was jointly determined by image and number format. Discrete images elicited a counting strategy for both fractions and decimals, but this strategy led to higher accuracy only for fractions. Continuous images encouraged magnitude estimation and comparison, but to a greater degree for decimals than fractions. This strategy led to decreased accuracy for both number formats. By analyzing participants’ eye movements when they viewed a relational context and made decisions, we were able to obtain an externalized representation of the strategic choices evoked by different ontological types of entities and different types of rational numbers. Our findings using eye-tracking measures enable us to go beyond previous studies based on accuracy data alone, demonstrating that quantitative properties of images and the different formats for rational numbers jointly influence strategies that generate eye-movement behavior.  相似文献   

2.
Many middle-school students struggle with decimals and fractions, even if they do not have a mathematical learning disability (MLD). In the present longitudinal study, we examined whether children with MLD have weaker rational number knowledge than children whose difficulty with rational numbers occurs in the absence of MLD. We found that children with MLD failed to accurately name decimals, to correctly rank order decimals and/or fractions, and to identify equivalent ratios (e.g. 0.5 = 1/2); they also 'identified' incorrect equivalents (e.g. 0.05 = 0.50). Children with low math achievement but no MLD accurately named decimals and identified equivalent pairs, but failed to correctly rank order decimals and fractions. Thus failure to accurately name decimals was an indicator of MLD; but accurate naming was no guarantee of rational number knowledge - most children who failed to correctly rank order fractions and decimals tests passed the naming task. Most children who failed the ranking tests at 6th grade also failed at 8th grade. Our findings suggest that a simple task involving naming and rank ordering fractions and decimals may be a useful addition to in-class assessments used to determine children's learning of rational numbers.  相似文献   

3.
Although several studies have compared the representation of fractions and decimals, no study has investigated whether fractions and decimals, as two types of rational numbers, share a common representation of magnitude. The current study aimed to answer the question of whether fractions and decimals share a common representation of magnitude and whether the answer is influenced by task paradigms. We included two different number pairs, which were presented sequentially: fraction–decimal mixed pairs and decimal–fraction mixed pairs in all four experiments. Results showed that when the mixed pairs were very close numerically with the distance 0.1 or 0.3, there was a significant distance effect in the comparison task but not in the matching task. However, when the mixed pairs were further apart numerically with the distance 0.3 or 1.3, the distance effect appeared in the matching task regardless of the specific stimuli. We conclude that magnitudes of fractions and decimals can be represented in a common manner, but how they are represented is dependent on the given task. Fractions and decimals could be translated into a common representation of magnitude in the numerical comparison task. In the numerical matching task, fractions and decimals also shared a common representation. However, both of them were represented coarsely, leading to a weak distance effect. Specifically, fractions and decimals produced a significant distance effect only when the numerical distance was larger.  相似文献   

4.
We present an empirical study that investigated seventh-, ninth-, and eleventh-grade students’ understanding of the infinity of numbers in an interval. The participants (n = 549) were asked how many (i.e., a finite or infinite number of numbers) and what type of numbers (i.e., decimals, fractions, or any type) lie between two rational numbers. The results showed that the idea of discreteness (i.e., that fractions and decimals had “successors” like natural numbers) was robust in all age groups; that students tended to believe that the intermediate numbers must be of the same type as the interval endpoints (i.e., only decimals between decimals and fractions between fractions); and that the type of interval endpoints (natural numbers, decimals, or fractions) influenced students’ judgments of the number of intermediate numbers in those intervals. We interpret these findings within the framework theory approach to conceptual change.  相似文献   

5.
Understanding fractions and decimals is difficult because whole numbers are the most frequently and earliest experienced type of number, and learners must avoid conceptualizing fractions and decimals in terms of their whole-number components (the "whole-number bias"). We explored the understanding of fractions, decimals, two-digit integers, and money in adults and 10-year-olds using two number line tasks: marking the line to indicate the target number, and estimating the numerical value of a mark on the line. Results were very similar for decimals, integers, and money in both tasks for both groups, demonstrating that the linear representation previously shown for integers is also evident for decimals already by the age of 10. Fractions seem to be "task dependent" so that when asked to place a fractional value on a line, both adults and children displayed a linear representation, while this pattern did not occur in the reverse task.  相似文献   

6.
Understanding fractions and decimals is difficult because whole numbers are the most frequently and earliest experienced type of number, and learners must avoid conceptualizing fractions and decimals in terms of their whole-number components (the “whole-number bias”). We explored the understanding of fractions, decimals, two-digit integers, and money in adults and 10-year-olds using two number line tasks: marking the line to indicate the target number, and estimating the numerical value of a mark on the line. Results were very similar for decimals, integers, and money in both tasks for both groups, demonstrating that the linear representation previously shown for integers is also evident for decimals already by the age of 10. Fractions seem to be “task dependent” so that when asked to place a fractional value on a line, both adults and children displayed a linear representation, while this pattern did not occur in the reverse task.  相似文献   

7.
贾志平  张志杰 《心理科学》2014,37(3):536-541
本研究采用抽象数量和实际数量叠加的方式呈现刺激,进一步探讨数量对时间知觉的影响。两个实验都运用时间的系列比较任务,以抽象数量和实际数量这两种数量的一致和不一致为条件,将阿拉伯数字和其字体大小叠加及阿拉伯数字和其呈现个数叠加的方式系列呈现在屏幕中央,要求被试比较判断刺激呈现的时间长短。结果显示被试均依靠实际数量的大小判断时间长短,而似乎忽略了抽象数量的存在。这一结果表明实际数量对时间知觉的影响要比抽象数量大,支持并扩展了数量理论。  相似文献   

8.
Clinical interviews administered to third- to sixth-graders explored children's conceptualizations of rational number and of certain extensive physical quantities. We found within child consistency in reasoning about diverse aspects of rational number. Children's spontaneous acknowledgement of the existence of numbers between 0 and 1 was strongly related to their induction that numbers are infinitely divisible in the sense that they can be repeatedly divided without ever getting to zero. Their conceptualizing number as infinitely divisible was strongly related to their having a model of fraction notation based on division and to their successful judgment of the relative magnitudes of fractions and decimals. In addition, their understanding number as infinitely divisible was strongly related to their understanding physical quantities as infinitely divisible. These results support a conceptual change account of knowledge acquisition, involving two-way mappings between the domains of number and physical quantity.  相似文献   

9.
Three experiments involving a Stroop-like paradigm were conducted. In Experiment 1, adults received a number comparison task in which large sets of dots, orthogonally varying along a discrete dimension (number of dots) and a continuous dimension (cumulative area), were presented. Incongruent trials were processed more slowly and with less accuracy than congruent trials, suggesting that continuous dimensions such as cumulative area are automatically processed and integrated during a discrete quantity judgement task. Experiment 2, in which adults were asked to perform area comparison on the same stimuli, revealed the reciprocal interference from number on the continuous quantity judgements. Experiment 3, in which participants received both the number and area comparison tasks, confirmed the results of Experiments 1 and 2. Contrasting with earlier statements, the results support the view that number acts as a more salient cue than continuous dimensions in adults. Furthermore, the individual predisposition to automatically access approximate number representations was found to correlate significantly with adults' exact arithmetical skills.  相似文献   

10.
Three experiments involving a Stroop-like paradigm were conducted. In Experiment 1, adults received a number comparison task in which large sets of dots, orthogonally varying along a discrete dimension (number of dots) and a continuous dimension (cumulative area), were presented. Incongruent trials were processed more slowly and with less accuracy than congruent trials, suggesting that continuous dimensions such as cumulative area are automatically processed and integrated during a discrete quantity judgement task. Experiment 2, in which adults were asked to perform area comparison on the same stimuli, revealed the reciprocal interference from number on the continuous quantity judgements. Experiment 3, in which participants received both the number and area comparison tasks, confirmed the results of Experiments 1 and 2. Contrasting with earlier statements, the results support the view that number acts as a more salient cue than continuous dimensions in adults. Furthermore, the individual predisposition to automatically access approximate number representations was found to correlate significantly with adults' exact arithmetical skills.  相似文献   

11.
Difficulties with rational numbers have been explained by a natural number bias, where concepts of natural numbers are inappropriately applied to rational numbers. Overcoming this difficulty may require a radical restructuring of previous knowledge. In order to capture this development, we examined third- to fifth-grade students' understanding of the size of rational numbers across a 1-year period. On three occasions, students answered a test about the size of decimals and fractions. Latent transition analysis allowed profiling five different rational number size concepts and mapping students' developmental trajectories during the early learning of this topic. Development from natural number-based reasoning to mathematically correct understanding was almost nonexistent during this time period. Instead, students appear to move through intermediary concepts. Locating these temporary and mediating number concepts supports the idea of a slow and gradually developing conceptual change in rational numbers.  相似文献   

12.
Short term Memory Impairment and Arithmetical Ability   总被引:2,自引:0,他引:2  
We document the dissociation of preserved calculation skills in a patient with impaired auditory short-term memory. The patient (MRF) had a memory span of three digits. Furthermore, he showed rapid decrement in performance of single digits and letters with both auditory and visual presentation in the Brown-Peterson forgetting task. Analysis of his calculation skills revealed a normal ability to solve auditorily presented multidigit addition and subtraction problems such as 173 + 68 and to execute the Paced Auditory Serial Addition Task (Sampson, 1956, 1958; Gronwall, 1977). In addition, his performance on other tests, including arithmetic manipulation of natural numbers, decimals and fractions, approximation, magnitude, ratio, and percentage, appeared to be normal (Hitch, 1978b). It is argued that these findings require a revision of Baddeley and Hitch's (1974) concept of the function of working memory.  相似文献   

13.
ABSTRACT

Solutions to word problems are moderated by the semantic alignment of real-world relations with mathematical operations. Categorical relations between entities (tulips, roses) are aligned with addition, whereas certain functional relations between entities (tulips, vases) are aligned with division. Similarly, discreteness vs. continuity of quantities (marbles, water) is aligned with different formats for rational numbers (fractions and decimals, respectively). These alignments have been found both in textbooks and in the performance of college students in the USA and in South Korea. The current study examined evidence for alignments in Russia. Textbook analyses revealed semantic alignments for arithmetic word problems, but not for rational numbers. Nonetheless, Russian college students showed semantic alignments both for arithmetic operations and for rational numbers. Since Russian students exhibit semantic alignments for rational numbers in the absence of exposure to examples in school, such alignments likely reflect intuitive understanding of mathematical representations of real-world situations.  相似文献   

14.
选取杭州市122名学前儿童(3~6岁)为被试,以点数比较任务及点数异同任务测量幼儿的近似数量系统敏锐度,以数数测验、基数测验、符号数字知识测验及简单计算来测量幼儿的符号数学能力,以此考察学前儿童近似数量系统敏锐度的发展及与符号数学能力的关系。结果发现:(1)随年龄增长,学前儿童的近似数量加工的敏锐度逐渐提高;(2)点数比较任务与点数异同任务均适合测量学前儿童近似数量系统敏锐度,但儿童完成点数比较任务的正确率要高于点数异同任务的正确率;(3)在抑制控制、短时记忆、工作记忆和言语测验成绩被控制后,根据点数比较任务计算的韦伯系数能显著预测学前儿童的基数和符号数字知识测验分数,总正确率能显著预测学前儿童的数数、基数、符号数字知识测验分数;(4)点数异同任务中只有点数不同试次下的正确率能显著预测学前儿童的符号数字知识测验分数。  相似文献   

15.
本研究采用复制时距和数字加工双任务,探讨数字大小影响时距知觉的机制。实验首先呈现不同时距的圆点,然后让被试按键复制圆点呈现的时距,与此同时,对屏幕上出现的数字进行命名(实验1)、奇偶数判断(实验2)、大小判断(实验3)。实验结果发现对数字进行奇偶数判断时,数字大小对时距知觉没有影响;进行数字命名和大小判断任务时,数字大小对时距知觉都产生了影响,并且时距不同,数字大小对时距知觉的影响也不同。该结果表明时距知觉的数字效应与数字加工任务和时距长短有关,呈现出动态变化的过程。  相似文献   

16.
通过数字线任务和离散物体任务对81名拥有错误整数偏向的儿童进行干预,再进行分数比较任务,以考查不同干预对错误整数偏向的影响以及分数在心理数字线上的表征方式。结果表明:(1)离散物体组儿童在干预任务中表现较好,在分数比较任务中得分也显著高于数字线组儿童,但反应时要慢于数字线组儿童。(2)正确比较分数时,两组均出现正确整数偏向,但错误的整数偏向依然存在,二者在整数系统扩展到有理数系统这个过渡期同时存在。  相似文献   

17.
张丽  蒋慧  赵立 《心理科学》2018,(2):337-343
本研究拟考察发展性计算障碍儿童的认知缺陷成因。实验1要求被试在三种形式(点/点,数/数,点/数)下进行数量比较,实验2仅将点集替换为汉字数字词。结果表明障碍组和正常组在数/数、点/数和汉字/汉字比较任务上的成绩存在显著差异,而在点/点和汉字/汉字比较上没有差异。据此推论,计算障碍儿童符号加工能力受到损伤,符号与非符号数量转换能力存在缺陷,但非符号加工能力和不同符号间数量转换没有缺陷,支持语义提取缺陷假设。  相似文献   

18.
类比数量表征的线索:离散量还是连续量   总被引:1,自引:1,他引:0       下载免费PDF全文
运用Stroop研究范式,对30名成人被试的类比数量表征线索进行了研究。结果发现:在类比数量的小数和大数段上,不存在表征线索的分化;在个数任务中不出现Stroop效应,但被试在强不一致条件下的错误率显著高于强一致条件下的错误率;在累积面积任务中出现Stroop效应,且在弱不一致、强不一致条件下的反应时、错误率都显著高于强一致、弱一致条件下的反应时、错误率。以上结果表明被试在进行类比数量表征时,可以同时提取离散量线索和连续量线索,但是对离散量线索的抑制要难于对连续量线索的抑制。  相似文献   

19.
This study investigated whether the mental representation of the fraction magnitude was componential and/or holistic in a numerical comparison task performed by adults. In Experiment 1, the comparison of fractions with common numerators (x/a_x/b) and of fractions with common denominators (a/x_b/x) primed the comparison of natural numbers. In Experiment 2, fillers (i.e., fractions without common components) were added to reduce the regularity of the stimuli. In both experiments, distance effects indicated that participants compared the numerators for a/x_b/x fractions, but that the magnitudes of the whole fractions were accessed and compared for x/a_x/b fractions. The priming effect of x/a_x/b fractions on natural numbers suggested that the interference of the denominator magnitude was controlled during the comparison of these fractions. These results suggested a hybrid representation of their magnitude (i.e., componential and holistic). In conclusion, the magnitude of the whole fraction can be accessed, probably by estimating the ratio between the magnitude of the denominator and the magnitude of the numerator. However, adults might prefer to rely on the magnitudes of the components and compare the magnitudes of the whole fractions only when the use of a componential strategy is made difficult.  相似文献   

20.
The approximate number system (ANS) theory suggests that all magnitudes, discrete (i.e., number of items) or continuous (i.e., size, density, etc.), are processed by a shared system and comply with Weber's law. The current study reexamined this notion by comparing performance in discrete (comparing numerosities of dot arrays) and continuous (comparisons of area of squares) tasks. We found that: (a) threshold of discrimination was higher for continuous than for discrete comparisons; (b) while performance in the discrete task complied with Weber's law, performance in the continuous task violated it; and (c) performance in the discrete task was influenced by continuous properties (e.g., dot density, dot cumulative area) of the dot array that were not predictive of numerosities or task relevant. Therefore, we propose that the magnitude processing system (MPS) is actually divided into separate (yet interactive) systems for discrete and continuous magnitude processing. Further subdivisions are discussed. We argue that cooperation between these systems results in a holistic comparison of magnitudes, one that takes into account continuous properties in addition to numerosities. Considering the MPS as two systems opens the door to new and important questions that shed light on both normal and impaired development of the numerical system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号