首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The surface structure of the waterfall illusion or motion aftereffect (MAE) is its phenomenal visibility. Its deep structure will be examined in the context of a model of space and motion perception. The MAE can be observed following protracted observation of a pattern that is translating, rotating, or expanding/contracting, a static pattern appears to move in the opposite direction. The phenomenon has long been known, and it continues to present novel properties. One of the novel features of MAEs is that they can provide an ideal visual assay for distinguishing local from global processes. Motion during adaptation can be induced in a static central grating by moving surround gratings; the MAE is observed in the static central grating but not in static surrounds. The adaptation phase is local and the test phase is global. That is, localised adaptation can be expressed in different ways depending on the structure of the test display. These aspects of MAEs can be exploited to determine a variety of local/global interactions. Six experiments on MAEs are reported. The results indicated that relational motion is required to induce an MAE; the region adapted extends beyond that stimulated; storage can be complete when the MAE is not seen during the storage period; interocular transfer (IOT) is around 30% of monocular MAEs with phase alternation; large field spiral patterns yield MAEs with characteristic monocular and binocular interactions.  相似文献   

2.
The existence of a directional motion aftereffect (MAE) for long-range (LR) stroboscopic apparent motion (SAM) was examined with the use of a directionally ambiguous test stimulus. The spatial and temporal parameters were such that the LR, rather than the short-range, mechanism was likely to be implicated. MAEs were found for SAM, which were in the same direction, but somewhat weaker than those for a comparable stimulus in real motion. The MAEs for SAM were present only when good apparent motion was perceived, and could be shown also when only the unstimulated area between the two stroboscopic flashes was tested. The LR mechanism was further implicated, since the MAEs were also obtained under dichoptic adaptation conditions. It is concluded that the LR-motion mechanism does show a usual MAE under proper testing conditions.  相似文献   

3.
Mather G  Murdoch L 《Perception》1998,27(7):761-767
Recent research indicates that the early stages of visual-motion analysis involve two parallel neural pathways, one conveying information from luminance-defined (first-order) image features, the other conveying information from texture-defined (second-order) features. It is still not clear whether these two pathways converge during later stages of global motion integration. According to one account they remain segregated, and feed separate global analyses. In the alternative account, all responses feed a common stage of global analysis. Two perceptual phenomena are universally held to result from interactions between detector responses during global motion integration--direction repulsion and motion capture. We conducted two psychophysical experiments on these phenomena to test for segregation of first-order and second-order responses during integration. Stimuli contained two components, either two random-block patterns transparently drifting in different directions (repulsion measurements), or a drifting square-wave grating superimposed on an incoherent random-block pattern (capture measurements). Repulsion and capture effects were measured when both stimulus components were the same order, and when one component was first order and the other was second order. Both effects were obtained for all combinations of first-order and second-order patterns. Repulsion effects were stronger with first-order inducing patterns, and capture effects were stronger with second-order inducers. The presence of perceptual interactions regardless of stimulus order strongly suggests that responses in first-order and second-order pathways interact during global motion analysis.  相似文献   

4.
It is well established that motion aftereffects (MAEs) can show interocular transfer (IOT); that is, motion adaptation in one eye can give a MAE in the other eye. Different quantification methods and different test stimuli have been shown to give different IOT magnitudes, varying from no to almost full IOT. In this study, we examine to what extent IOT of the dynamic MAE (dMAE), that is the MAE seen with a dynamic noise test pattern, varies with velocity of the adaptation stimulus. We measured strength of dMAE by a nulling method. The aftereffect induced by adaptation to a moving random-pixel array was compensated (nulled), during a brief dynamic test period, by the same kind of motion stimulus of variable luminance signal-to-noise ratio (LSNR). The LSNR nulling value was determined in a Quest-staircase procedure. We found that velocity has a strong effect on the magnitude of IOT for the dMAE. For increasing speeds from 1.5 deg s(-1) to 24 deg s(-1) average IOT values increased about linearly from 18% to 63% or from 32% to 83%, depending on IOT definition. The finding that dMAEs transfer to an increasing extent as speed increases, suggests that binocular cells play a more dominant role at higher speeds.  相似文献   

5.
In a first-order reversed-phi motion stimulus (Anstis, 1970), the black-white contrast of successive frames is reversed, and the direction of apparent motion may, under some conditions, appear to be reversed. It is demonstrated here that, for many classes of stimuli, this reversal is a mathematical property of the stimuli themselves, and the real problem is in perceiving forward motion, which involves the second- or third-order motion systems or both. Three classes of novel second-order reversed-phi stimuli (contrast, spatial frequency, and flicker modulation) that are invisible to first-order motion analysis were constructed. In these stimuli, the salient stimulus features move in the forward (feature displacement) direction, but the second-order motion energy model predicts motion in the reversed direction. In peripheral vision, for all stimulus types and all temporal frequencies, all the observers saw only the reversed-phi direction of motion. In central vision, the observers also perceived reversed motion at temporal frequencies above about 4 Hz, but they perceived movement in the forward direction at lower temporal frequencies. Since all of these stimuli are invisible to first-order motion, these results indicate that the second-order reversed-phi stimuli activate two subsequent competing motion mechanisms, both of which involve an initial stage of texture grabbing (spatiotemporal filtering, followed by fullwave rectification). The second-order motion system then applies a Reichardt detector (or equivalently, motion energy analysis) directly to this signal and arrives at the reversed-phi direction. The third-order system marks the location of features that differ from the background (the figure) in a salience map and computes motion in the forward direction from the changes in the spatiotemporal location of these marks. The second-order system's report of reversed movement dominates in peripheral vision and in central vision at higher temporal frequencies, because it has better spatial and temporal resolution than the third-order system, which has a cutoff frequency of 3-4 Hz (Lu & Sperling, 1995b). In central vision, below 3-4 Hz, the third-order system's report of resolvable forward movement of something salient (the figure) dominates the second-order system's report of texture contrast movement.  相似文献   

6.
The effect of varying the spatial relationships between an adapt/test grating and a stationary surrounding reference grating, and their interaction with diversion of attention during adaptation, were investigated in two experiments on the movement aftereffect (MAE). In experiment 1, MAEs were found to increase as the separation between the surrounding grating and the adapt/test grating decreased, but not with the area of the adapt/test grating. Although diversion during adaptation (repeating changing digits at the fixation point) reduced MAE durations, its effects did not interact with any of the stimulus variables. In experiment 2, MAE durations increased as the outer dimensions of the reference grating were increased, and this effect did interact with diversion, so that the effects of diversion were smaller when the surround grating was larger. This suggests that diversion may be affecting the inputs to an opponent process in motion adaptation, with a smaller effect on the surrounds than on the centres of antagonistic motion-contrast detectors with large receptive fields. A third experiment showed that, although repeating the word 'zero' during adaptation reduced MAEs, this reduction was smaller than that from naming a changing sequence of digits (and not significantly different from that from simply observing the changing digits), suggesting that MAE reductions are not produced only, if at all, by putative movements of the head and eyes caused by speaking.  相似文献   

7.
A visual illusion known as the motion aftereffect is considered to be the perceptual manifestation of motion sensors that are recovering from adaptation. This aftereffect can be obtained for a specific range of adaptation speeds with its magnitude generally peaking for speeds around 3 deg s-1. The classic motion aftereffect is usually measured with a static test pattern. Here, we measured the magnitude of the motion aftereffect for a large range of velocities covering also higher speeds, using both static and dynamic test patterns. The results suggest that at least two (sub)populations of motion-sensitive neurons underlie these motion aftereffects. One population shows itself under static test conditions and is dominant for low adaptation speeds, and the other is prevalent under dynamic test conditions after adaptation to high speeds. The dynamic motion aftereffect can be perceived for adaptation speeds up to three times as fast as the static motion aftereffect. We tested predictions that follow from the hypothesised division in neuronal substrates. We found that for exactly the same adaptation conditions (oppositely directed transparent motion with different speeds), the aftereffect direction differs by 180 degrees depending on the test pattern. The motion aftereffect is opposite to the pattern moving at low speed when the test pattern is static, and opposite to the high-speed pattern for a dynamic test pattern. The determining factor is the combination of adaptation speed and type of test pattern.  相似文献   

8.
In a first-order reversed-phi motion stimulus (Anstis, 1970), the black-white contrast of successive frames is reversed, and the direction of apparent motion may, under some conditions, appear to be reversed. It is demonstrated here that, for many classes of stimuli, this reversal is a mathematical property of the stimuli themselves, and the real problem is in perceiving forward motion, which involves the second- or third-order motion systems or both. Three classes of novel second-order reversed-phi stimuli (contrast, spatial frequency, and flicker modulation) that are invisible to first-order motion analysis were constructed. In these stimuli, the salient stimulus features move in theforward (feature displacement) direction, but the second-order motion energy model predicts motion in thereversed direction. In peripheral vision, for all stimulus types and all temporal frequencies, all the observers saw only the reversed-phi direction of motion. In central vision, the observers also perceived reversed motion at temporal frequencies above about 4 Hz, but they perceived movement in the forward direction at lower temporal frequencies. Since all of these stimuli are invisible to first-order motion, these results indicate that the second-order reversed-phi stimuli activate two subsequent competing motion mech-anisms, both of which involve an initial stage of texture grabbing (spatiotemporal filtering, followed by fullwave rectification). The second-order motion system then applies a Reichardt detector (or equiva-lently, motion energy analysis) directly to this signal and arrives at the reversed-phi direction. The third-order system marks the location of features that differ from the background (the figure) in a salience map and computes motion in the forward direction from the changes in the spatiotemporal location of these marks. The second-order system’s report of reversed movement dominates in peripheral vision and in central vision at higher temporal frequencies, because it has better spatial and temporal resolu-tion than the third-order system, which has a cutoff frequency of 3–4 Hz (Lu & Sperling, 1995b). In cen-tral vision, below 3–4 Hz, the third-order system’s report of resolvable forward movement of something salient (the figure) dominates the second-order system’s report of texture contrast movement.  相似文献   

9.
Some comparative experiments on the dichoptic induction of the movement aftereffect (MAE) contingent on color and the MAE contingent on orientation are reported. Colorcontingent movement aftereffects could be evoked only when the eye which had viewed color during adaptation also viewed color during test sessions. When the apparent color of the test field was changed by binocular color rivalry, contingent movement aftereffects (CMAEs) appropriate to the suppressed color were reported. After dichoptic induction of the orientation-contingent MAE, aftereffects could be obtained whether the eliciting gratings and stationary test fields were presented together to either eye alone or were dichoptically viewed.  相似文献   

10.
A novel display is described which stimulates both the long-range and the short-range motion detecting processes simultaneously, but with opposing directions of movement. The direction in which the stimulus appears to move depends on retinal eccentricity and element size, but adaptation to the display always produces a motion aftereffect (MAE) direction opposite to the direction of the short-range component. The display may offer insights into the properties of the two-process motion detecting system.  相似文献   

11.
A stationary vertical test grating appears to drift to the left after adaptation to an inducing grating drifting to the right, this being known as the motion aftereffect (MAE). Pattern-specific motion aftereffects (PSMAEs) induced by superimposed pairs of gratings in which the component gratings drift up and down but the observer sees a single coherent plaid drifting to the right have been investigated. Two experiments are reported in which it is demonstrated that the PSMAE is tuned more to the motion of the pattern than to the orientation and direction of motion of the component gratings. However, when subjects adapt to the component gratings in alternation, aftereffect magnitude is dependent upon the individual grating orientations and motion directions. These results can be interpreted in terms of extrastriate contributions to the PSMAE, possibly arising from the middle temporal area, where some cells, unlike those in striate cortex (V1), are tuned to pattern motion rather than to component motion.  相似文献   

12.
The procedure for eliciting movement aftereffect (MAE) involves the subject's adapting to visual movement that subsequently stops. Conventionally, MAE is confined to the area of movement adaptation. However, Wohlgemuth (1911) demonstrated the existence of a type of MAE that had the opposite characteristics of an adjoining conventional MAE; the test area was unpatterned during adaptation and patterned during testing. This spatial-contrast MAE may be connected with the more recently identified induced movement MAE. Unfortunately, the eliciting movements have not necessarily been comparable; Wohlgemuth used centrifugal and centripetal movement, whereas induced movement MAE has generally been rotary. The results of this study indicate that rotary spatial-contrast MAE can be elicited by a display that, with modification, also elicits induced movement MAE and that the rotary spatial-contrast MAE is weaker than the equivalent induced movement MAE.  相似文献   

13.
Induced motion (IM) was measured before and after a 10-min adaptation period during which subjects viewed the IM display without judging IM magnitude. The inducing stimulus was a rectangle, which contains both horizontal and vertical reference detail. The magnitude of IM was significantly lower following the adaptation period. This result is inconsistent with the hypothesis that adaptation of IM represents an instance of perceptual learning wherein the contribution of relative motion to motion perception is reduced. In a separate study, similar results were obtained when the inducing stimulus was a single vertical bar presented either to the left or to the right of the fixation stimulus. In addition, adaptation was obtained when the location of the inducing bar was changed during test measures, demonstrating that this effect is not specific to the retinal locus of the adaptation stimulus.  相似文献   

14.
A Mack  J Hill  S Kahn 《Perception》1989,18(5):649-655
Two experiments are described in which it was investigated whether the adaptation on which motion aftereffects (MAEs) are based is a response to retinal image motion alone or to the motion signal derived from the process which combines the image motion signal with information about eye movement (corollary discharge). In both experiments observers either fixated a stationary point or tracked a vertically moving point while a pattern (in experiment 1, a grating; in experiment 2, a random-dot pattern) drifted horizontally across the field. In the tracking condition the adapting retinal motion was oblique. In the fixation condition it was horizontal. In every case in both conditions the MAE was horizontal, in the direction opposite to that of pattern motion. These results are consistent with the hypothesis that the adaptation is a response to the motion signal derived from the comparison of eye and image motion rather than to retinal motion per se. An alternative explanation is discussed.  相似文献   

15.
Pigeon subjects were used in five experiments investigating second-order conditioning with visual second-order and diffuse auditory first-order stimuli. Experiment 1 used a discriminative conditioning procedure to demonstrate reliable and substantial second-order conditioning with these stimuli. In Experiments 2 and 3, extinction of the auditory first-order stimulus after second-order conditioning had little effect upon responding to the second-order stimulus, when compared to a stimulus whose reinforcer was maintained. Experiment 4 compared directly the susceptibility of second-order responding to extinction of the first-order reinforcing stimulus as a function of the modality of that reinforcer. When a visual second-order stimulus was paired with a visual reinforcer, and the response to the latter was extinguished, then second-order responding was greatly reduced relative to control levels. In contrast, when that reinforcer was an auditory stimulus, second-order responding was not affected by the current value of the first-order stimulus after conditioning. Finally, in Experiment 5 the auditory stimulus was established as a reinforcer through discriminative-operant training. Following second-order conditioning, extinction of responding to this stimulus again had little impact upon responding to the second-order stimulus with which it had been paired. These results are discussed in terms of previous work on second-order conditioning with rat and pigeon subjects.  相似文献   

16.
M T Swanston  N J Wade 《Perception》1992,21(5):569-582
The motion aftereffect (MAE) was measured with retinally moving vertical gratings positioned above and below (flanking) a retinally stationary central grating (experiments 1 and 2). Motion over the retina was produced by leftward motion of the flanking gratings relative to the stationary eyes, and by rightward eye or head movements tracking the moving (but retinally stationary) central grating relative to the stationary (but retinally moving) surround gratings. In experiment 1 the motion occurred within a fixed boundary on the screen, and oppositely directed MAEs were produced in the central and flanking gratings with static fixation; but with eye or head tracking MAEs were reported only in the central grating. In experiment 2 motion over the retina was equated for the static and tracking conditions by moving blocks of grating without any dynamic occlusion and disclosure at the boundaries. Both conditions yielded equivalent leftward MAEs of the central grating in the same direction as the prior flanking motion, ie an MAE was consistently produced in the region that had remained retinally stationary. No MAE was recorded in the flanking gratings, even though they moved over the retina during adaptation. When just two gratings were presented, MAEs were produced in both, but in opposite directions (experiments 3 and 4). It is concluded that the MAE is a consequence of adapting signals for the relative motion between elements of a display.  相似文献   

17.
Summary A Movement After-Effect (MAE) observed on a structured test figure contains generally two successive phases. The initial one is non-contingent upon the test figure and is assumed to result from an adaptation process. The second phase is shown to be contingent upon the features of the test figure and their similarity with those of the generating figure. A conditioning process is assumed to share in its appearance. In Experiment I, it is shown that the areal spread of MAE which may appear in the contingent phase is likely to result from a generalization process in which part of the test figure corresponding to an unstimulated area becomes transiently effective in generating a MAE. In Experiment II distributed practice of the MAE is shown to lead to an increase in the duration of the effect when the generating and test figures are similar. This last result suggests that the true conditioning stimulus is the generating figure as such.  相似文献   

18.
Harris J  Sullivan D  Oakley M 《Perception》2008,37(7):1010-1021
Static movement aftereffects (MAEs) were measured after adaptation to vertical square-wave luminance gratings drifting horizontally within a central window in a surrounding stationary vertical grating. The relationship between the stationary test grating and the surround was manipulated by varying the alignment of the stationary stripes in the window and those in the surround, and the type of outline separating the window and the surround [no outline, black outline (invisible on black stripes), and red outline (visible throughout its length)]. Offsetting the stripes in the window significantly increased both the duration and ratings of the strength of MAEs. Manipulating the outline had no significant effect on either measure of MAE strength. In a second experiment, in which the stationary test fields alone were presented, participants judged how segregated the test field appeared from its surround. In contrast to the MAE measures, outline as well as offset contributed to judged segregation. In a third experiment, in which test-stripe offset was systematically manipulated, segregation ratings rose with offset. However, MAE strength was greater at medium than at either small or large (180 degrees phase shift) offsets. The effects of these manipulations on the MAE are interpreted in terms of a spatial mechanism which integrates motion signals along collinear contours of the test field and surround, and so causes a reduction of motion contrast at the edges of the test field.  相似文献   

19.
Dance-like actions are complex visual stimuli involving multiple changes in body posture across time and space. Visual perception research has demonstrated a difference between the processing of dynamic body movement and the processing of static body posture. Yet, it is unclear whether this processing dissociation continues during the retention of body movement and body form in visual working memory (VWM). When observing a dance-like action, it is likely that static snapshot images of body posture will be retained alongside dynamic images of the complete motion. Therefore, we hypothesized that, as in perception, posture and movement would differ in VWM. Additionally, if body posture and body movement are separable in VWM, as form- and motion-based items, respectively, then differential interference from intervening form and motion tasks should occur during recognition. In two experiments, we examined these hypotheses. In Experiment 1, the recognition of postures and movements was tested in conditions in which the formats of the study and test stimuli matched (movement–study to movement–test, posture–study to posture–test) or mismatched (movement–study to posture–test, posture–study to movement–test). In Experiment 2, the recognition of postures and movements was compared after intervening form and motion tasks. These results indicated that (1) the recognition of body movement based only on posture is possible, but it is significantly poorer than recognition based on the entire movement stimulus, and (2) form-based interference does not impair memory for movements, although motion-based interference does. We concluded that, whereas static posture information is encoded during the observation of dance-like actions, body movement and body posture differ in VWM.  相似文献   

20.
Observers were adapted to simulated auditory movement produced by dynamically varying the interaural time and intensity differences of tones (500 or 2,000 Hz) presented through headphones. At lO-sec intervals during adaptation, various probe tones were presented for 1 sec (the frequency of the probe was always the same as that of the adaptation stimulus). Observers judged the direction of apparent movement (“left” or “right”) of each probe tone. At 500 Hz, with a 200-deg/sec adaptation velocity, “stationary” probe tones were consistently judged to move in the direction opposite to that of the adaptation stimulus. We call this result an auditory motion aftereffect. In slower velocity adaptation conditions, progressively less aftereffect was demonstrated. In the higher frequency condition (2,000 Hz, 200-deg/sec adaptation velocity), we found no evidence of motion aftereffect. The data are discussed in relation to the well-known visual analog-the “waterfall effect.” Although the auditory aftereffect is weaker than the visual analog, the data suggest that auditory motion perception might be mediated, as is generally believed for the visual system, by direction-specific movement analyzers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号