首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The visual environment is extremely rich and complex, producing information overload for the visual system. But the environment also embodies structure in the form of redundancies and regularities that may serve to reduce complexity. How do perceivers internalize this complex informational structure? We present new evidence of visual learning that illustrates how observers learn how objects and events covary in the visual world. This information serves to guide visual processes such as object recognition and search. Our first experiment demonstrates that search and object recognition are facilitated by learned associations (covariation) between novel visual shapes. Our second experiment shows that regularities in dynamic visual environments can also be learned to guide search behavior. In both experiments, learning occurred incidentally and the memory representations were implicit. These experiments show how top-down visual knowledge, acquired through implicit learning, constrains what to expect and guides where to attend and look.  相似文献   

2.
Current theories of object recognition in human vision make different predictions about whether the recognition of complex, multipart objects should be influenced by shape information about surface depth orientation and curvature derived from stereo disparity. We examined this issue in five experiments using a recognition memory paradigm in which observers (N = 134) memorized and then discriminated sets of 3D novel objects at trained and untrained viewpoints under either mono or stereo viewing conditions. In order to explore the conditions under which stereo-defined shape information contributes to object recognition we systematically varied the difficulty of view generalization by increasing the angular disparity between trained and untrained views. In one series of experiments, objects were presented from either previously trained views or untrained views rotated (15°, 30°, or 60°) along the same plane. In separate experiments we examined whether view generalization effects interacted with the vertical or horizontal plane of object rotation across 40° viewpoint changes. The results showed robust viewpoint-dependent performance costs: Observers were more efficient in recognizing learned objects from trained than from untrained views, and recognition was worse for extrapolated than for interpolated untrained views. We also found that performance was enhanced by stereo viewing but only at larger angular disparities between trained and untrained views. These findings show that object recognition is not based solely on 2D image information but that it can be facilitated by shape information derived from stereo disparity.  相似文献   

3.
W H Warren  E E Kim  R Husney 《Perception》1987,16(3):309-336
Human observers may perceive not only spatial and temporal dimensions of the environment, but also dynamic physical properties that are useful for the control of behavior. A study is presented in which visual and auditory perception of elasticity in bouncing objects, which was specified by kinematic (spatiotemporal) patterns of object motion, were examined. In experiment 1, observers could perceive the elasticity of a bouncing ball and were able to regulate the impulse applied to the ball in a bounce pass. In experiments 2 and 3, it was demonstrated that visual perception of elasticity was based on relative height information, when it was available, and on the duration of a single period under other conditions. Observers did not make effective use of velocity information. In experiment 4, visual and auditory period information were compared and equivalent performance in both modalities was found. The results are interpreted as support for the view that dynamic properties of environmental events are perceived by means of kinematic information.  相似文献   

4.
Although both the object and the observer often move in natural environments, the effect of motion on visual object recognition ha not been well documented. The authors examined the effect of a reversal in the direction of rotation on both explicit and implicit memory for novel, 3-dimensional objects. Participants viewed a series of continuously rotating objects and later made either an old-new recognition judgment or a symmetric-asymmetric decision. For both tasks, memory for rotating objects was impaired when the direction of rotation was reversed at test. These results demonstrate that dynamic information can play a role in visual object recognition and suggest that object representations can encode spatiotemporal information.  相似文献   

5.
Although visual object recognition is primarily shape driven, colour assists the recognition of some objects. It is unclear, however, just how colour information is coded with respect to shape in long-term memory and how the availability of colour in the visual image facilitates object recognition. We examined the role of colour in the recognition of novel, 3-D objects by manipulating the congruency of object colour across the study and test phases, using an old/new shape-identification task. In experiment 1, we found that participants were faster at correctly identifying old objects on the basis of shape information when these objects were presented in their original colour, rather than in a different colour. In experiments 2 and 3, we found that participants were faster at correctly identifying old objects on the basis of shape information when these objects were presented with their original part-colour conjunctions, rather than in different or in reversed part-colour conjunctions. In experiment 4, we found that participants were quite poor at the verbal recall of part-colour conjunctions for correctly identified old objects, presented as grey-scale images at test. In experiment 5, we found that participants were significantly slower at correctly identifying old objects when object colour was incongruent across study and test, than when background colour was incongruent across study and test. The results of these experiments suggest that both shape and colour information are stored as part of the long-term representation of these novel objects. Results are discussed in terms of how colour might be coded with respect to shape in stored object representations.  相似文献   

6.
Our intuition that we richly represent the visual details of our environment is illusory. When viewing a scene, we seem to use detailed representations of object properties and interobject relations to achieve a sense of continuity across views. Yet, several recent studies show that human observers fail to detect changes to objects and object properties when localized retinal information signaling a change is masked or eliminated (e.g., by eye movements). However, these studies changed arbitrarily chosen objects which may have been outside the focus of attention. We draw on previous research showing the importance of spatiotemporal information for tracking objects by creating short motion pictures in which objects in both arbitrary locations and the very center of attention were changed. Adult observers failed to notice changes in both cases, even when the sole actor in a scene transformed into another person across an instantaneous change in camera angle (or “cut”).  相似文献   

7.
Two experiments investigate whether 7-month-olds reason about the origin of motion events by considering two sources of causally relevant information: spatiotemporal cues and dispositional status information derived from the identification of an object as either animate (with the enduring causal property of self-initiated motion) or inanimate (requiring an external cause of motion). Infants were shown a ball, a human hand, and an animal engaged in a motion event. While dispositional status information remained constant, spatiotemporal relations varied across conditions. Based on looking time data, we conclude that infants attend flexibly to both types of information. Without spatiotemporal cues, infants rely on dispositional status information. When two objects provide dispositional cues to motion origin, but only one also provides corresponding spatiotemporal information, infants attribute the motion to the object providing both types of information. Given an ambiguous motion event with two dispositional motion originators but no additional spatiotemporal cues, infants may prefer either of the two.  相似文献   

8.
Studies of patients with category-specific agnosia (CSA) have given rise to multiple theories of object recognition, most of which assume the existence of a stable, abstract semantic memory system. We applied an episodic view of memory to questions raised by CSA in a series of studies examining normal observers' recall of newly learned attributes of familiar objects. Subjects first learned to associate arbitrarily assigned colors or textures to objects in a training phase, and then attempted to report the newly learned attribute of each object in a recall task. Our subjects' pattern of recall errors was similar both quantitatively and qualitatively to the identification deficits among patients with CSA for biological objects. Furthermore, errors tended to reflect conceptually and structurally based confusions. We suggest that object identification involves recruitment and integration of information across distributed episodic memories and that this process is susceptible to interference from objects that are structurally similar and conceptually related.  相似文献   

9.
Objects are best recognized from so-called “canonical” views. The characteristics of canonical views of arbitrary objects have been qualitatively described using a variety of different criteria, but little is known regarding how these views might be acquired during object learning. We address this issue, in part, by examining the role of object motion in the selection of preferred views of novel objects. Specifically, we adopt a modeling approach to investigate whether or not the sequence of views seen during initial exposure to an object contributes to observers’ preferences for particular images in the sequence. In two experiments, we exposed observers to short sequences depicting rigidly rotating novel objects and subsequently collected subjective ratings of view canonicality (Experiment 1) and recall rates for individual views (Experiment 2). Given these two operational definitions of view canonicality, we attempted to fit both sets of behavioral data with a computational model incorporating 3-D shape information (object foreshortening), as well as information relevant to the temporal order of views presented during training (the rate of change for object foreshortening). Both sets of ratings were reasonably well predicted using only 3-D shape; the inclusion of terms that capture sequence order improved model performance significantly.  相似文献   

10.
We investigated the role of global (body) and local (parts) motion on the recognition of unfamiliar objects. Participants were trained to categorise moving objects and were then tested on their recognition of static images of these targets using a priming paradigm. Each static target shape was primed by a moving object that comprised either the same body and parts motion; same body, different parts motion; different body, same part motion as the learned target or was non-moving. Only the same body but not the same part motion facilitated shape recognition (Experiment 1), even when either motion was diagnostic of object identity (Experiment 2). When parts motion was more related to the object's body motion then it facilitated the recognition of the static target (Experiment 3). Our results suggest that global and local motions are independently accessed during object recognition and have important implications for how objects are represented in memory.  相似文献   

11.
The visual system seems to integrate information that is presented over time in a spatially fragmented fashion, with the result that observers are able to report the whole shape of objects. This research considers relations in space and time that allow the integrated percepts of complete objects. Specifically, temporal characteristics for spatiotemporal integration of illusory contour and spatial characteristics of interpolated contour are examined. A serial presentation paradigm and a dot localization task were used in two experiments; observers localized a probe dot relative to a perceived contour of an illusory object. Each of four inducing figures was briefly presented in a serial order to observers and the total time of the series was manipulated. In Experiment 1 short time ranges varied up to 180 ms, whereas longer times were examined in Experiment 2. Overall, the results demonstrate that a short time allows spatiotemporal integration, and that the perceived location of contour consistently shifts with time range. These experiments suggest that the mechanism of spatiotemporal integration operates on spatial integration as a limiting case.  相似文献   

12.
In this study, we evaluated observers' ability to compare naturally shaped three-dimensional (3-D) objects, using their senses of vision and touch. In one experiment, the observers haptically manipulated 1 object and then indicated which of 12 visible objects possessed the same shape. In the second experiment, pairs of objects were presented, and the observers indicated whether their 3-D shape was the same or different. The 2 objects were presented either unimodally (vision-vision or haptic-haptic) or cross-modally (vision-haptic or haptic-vision). In both experiments, the observers were able to compare 3-D shape across modalities with reasonably high levels of accuracy. In Experiment 1, for example, the observers' matching performance rose to 72% correct (chance performance was 8.3%) after five experimental sessions. In Experiment 2, small (but significant) differences in performance were obtained between the unimodal vision-vision condition and the two cross-modal conditions. Taken together, the results suggest that vision and touch have functionally overlapping, but not necessarily equivalent, representations of 3-D shape.  相似文献   

13.
Mitroff SR  Scholl BJ  Noles NS 《Perception》2007,36(12):1730-1735
Our ability to track an object as the same persisting entity over time and motion may primarily rely on spatiotemporal representations which encode some, but not all, of an object's features. Previous researchers using the 'object reviewing' paradigm have demonstrated that such representations can store featural information of well-learned stimuli such as letters and words at a highly abstract level. However, it is unknown whether these representations can also store purely episodic information (i.e. information obtained from a single, novel encounter) that does not correspond to pre-existing type-representations in long-term memory. Here, in an object-reviewing experiment with novel face images as stimuli, observers still produced reliable object-specific preview benefits in dynamic displays: a preview of a novel face on a specific object speeded the recognition of that particular face at a later point when it appeared again on the same object compared to when it reappeared on a different object (beyond display-wide priming), even when all objects moved to new positions in the intervening delay. This case study demonstrates that the mid-level visual representations which keep track of persisting identity over time--e.g. 'object files', in one popular framework can store not only abstract types from long-term memory, but also specific tokens from online visual experience.  相似文献   

14.
A single experiment investigated how younger (aged 18-32 years) and older (aged 62-82 years) observers perceive 3D object shape from deforming and static boundary contours. On any given trial, observers were shown two smoothly-curved objects, similar to water-smoothed granite rocks, and were required to judge whether they possessed the "same" or "different" shape. The objects presented during the "different" trials produced differently-shaped boundary contours. The objects presented during the "same" trials also produced different boundary contours, because one of the objects was always rotated in depth relative to the other by 5, 25, or 45 degrees. Each observer participated in 12 experimental conditions formed by the combination of 2 motion types (deforming vs. static boundary contours), 2 surface types (objects depicted as silhouettes or with texture and Lambertian shading), and 3 angular offsets (5, 25, and 45 degrees). When there was no motion (static silhouettes or stationary objects presented with shading and texture), the older observers performed as well as the younger observers. In the moving object conditions with shading and texture, the older observers' performance was facilitated by the motion, but the amount of this facilitation was reduced relative to that exhibited by the younger observers. In contrast, the older observers obtained no benefit in performance at all from the deforming (i.e., moving) silhouettes. The reduced ability of older observers to perceive 3D shape from motion is probably due to a low-level deterioration in the ability to detect and discriminate motion itself.  相似文献   

15.
Observers typically detect changes to central objects more readily than changes to marginal objects, but they sometimes miss changes to central, attended objects as well. However, even if observers do not report such changes, they may be able to recognize the changed object. In three experiments we explored change detection and recognition memory for several types of changes to central objects in motion pictures. Observers who failed to detect a change still performed at above chance levels on a recognition task in almost all conditions. In addition, observers who detected the change were no more accurate in their recognition than those who did not detect the change. Despite large differences in the detectability of changes across conditions, those observers who missed the change did not vary in their ability to recognize the changing object.  相似文献   

16.
This study investigates the interaction between surface and colour knowledge information during object recognition. In two different experiments, participants were instructed to decide whether two presented stimuli belonged to the same object identity. On the non-matching trials, we manipulated the shape and colour knowledge information activated by the two stimuli by creating four different stimulus pairs: (1) similar in shape and colour (e.g. TOMATO–APPLE); (2) similar in shape and dissimilar in colour (e.g. TOMATO–COCONUT); (3) dissimilar in shape and similar in colour (e.g. TOMATO–CHILI PEPPER) and (4) dissimilar in both shape and colour (e.g. TOMATO–PEANUT). The object pictures were presented in typical and atypical colours and also in black-and-white. The interaction between surface and colour knowledge showed to be contingent upon shape information: while colour knowledge is more important for recognising structurally similar shaped objects, surface colour is more prominent for recognising structurally dissimilar shaped objects.  相似文献   

17.
In two experiments, we investigated the activation of perceptual representations of referent objects during word processing. In both experiments, participants learned to associate pictures of novel three-dimensional objects with pseudowords. They subsequently performed a recognition task (Experiment 1) or a naming task (Experiment 2) on the object names while being primed with different types of visual stimuli. Only the stimuli that the participants had encountered as referent objects during the training phase facilitated recognition or naming responses. New stimuli did not facilitate the processing of object names, even if they matched a schematic or prototypical representation of the referent object that the participants might have abstracted during word-referent learning. These results suggest that words learned by way of examples of referent objects are associated with experiential traces of encounters with these objects.  相似文献   

18.
Invariant recognition of natural objects in the presence of shadows   总被引:2,自引:0,他引:2  
Braje WL  Legge GE  Kersten D 《Perception》2000,29(4):383-398
Shadows are frequently present when we recognize natural objects, but it is unclear whether they help or hinder recognition. Shadows could improve recognition by providing information about illumination and 3-D surface shape, or impair recognition by introducing spurious contours that are confused with object boundaries. In three experiments, we explored the effect of shadows on recognition of natural objects. The stimuli were digitized photographs of fruits and vegetables displayed with or without shadows. In experiment 1, we evaluated the effects of shadows, color, and image resolution on naming latency and accuracy. Performance was not affected by the presence of shadows, even for gray-scale, blurry images, where shadows are difficult to identify. In experiment 2, we explored recognition of two-tone images of the same objects. In these images, shadow edges are difficult to distinguish from object and surface edges because all edges are defined by a luminance boundary. Shadows impaired performance, but only in the early trials. In experiment 3, we examined whether shadows have a stronger impact when exposure time is limited, allowing little time for processing shadows; no effect of shadows was found. These studies show that recognition of natural objects is highly invariant to the complex luminance patterns caused by shadows.  相似文献   

19.
Humans see whole objects from input fragmented in space and time, yet spatiotemporal object perception is poorly understood. The authors propose the theory of spatiotemporal relatability (STR), which describes the visual information and processes that allow visible fragments revealed at different times and places, due to motion and occlusion, to be assembled into unitary perceived objects. They present a formalization of STR that specifies spatial and temporal relations for object formation. Predictions from the theory regarding conditions that lead to unit formation were tested and confirmed in experiments with dynamic and static, occluded and illusory objects. Moreover, the results support the identity hypothesis of a common process for amodal and modal contour interpolation and provide new evidence regarding the relative efficiency of static and dynamic object formation. STR postulates a mental representation, the dynamic visual icon, that briefly maintains shapes and updates positions of occluded fragments to connect them with visible regions. The theory offers a unified account of interpolation processes for static, dynamic, occluded, and illusory objects.  相似文献   

20.
Son JY  Smith LB  Goldstone RL 《Cognition》2008,108(3):626-638
Development in any domain is often characterized by increasingly abstract representations. Recent evidence in the domain of shape recognition provides one example; between 18 and 24 months children appear to build increasingly abstract representations of object shape [Smith, L. B. (2003). Learning to recognize objects. Psychological Science, 14, 244-250]. Abstraction is in part simplification because it requires the removal of irrelevant information. At the same time, part of generalization is ignoring irrelevant differences. The resulting prediction is this: simplification may enable generalization. Four experiments asked whether simple training instances could shortcut the process of abstraction and directly promote appropriate generalization. Toddlers were taught novel object categories with either simple or complex training exemplars. We found that children who learned with simple objects were able to generalize according to shape similarity, typically relevant for early object categories, better than those who learned with complex objects. Abstraction is the product of learning; using simplified - already abstracted instances - can short-cut that learning, leading to robust generalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号