首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a pointing test, perceived location of a target seen in induced motion was evaluated under two display conditions. In one, a fixated, horizontally stationary spot was surrounded by a frame moving back and forth. As the frame moved to each side, its center shifted correspondingly with respect to the subject’s objective median plane. In the second display, the surround was constructed so that as it moved back and forth, its center remained in virtual alignment with the objective median plane. Although both conditions produced a substantial induced-motion effect, only the former produced significant shifts in the target’s perceived location. Furthermore, similar shifts were also obtained with a stationary, offcenter frame (Experiment 2). This suggests that the changes in perceived location obtained with the first induced-motion display were not derived from the induced motion per se, but, rather, from a frame effect produced when the surround moved to an off-center position. Implications for the relationship between perceived motion and position, as well as for two theories of induced motion, are discussed.  相似文献   

2.
Studies of saccadic suppression and induced motion have suggested separate representations of visual space for perception and visually guided behavior. Because these methods required stimulus motion, subjects might have confounded motion and position. We separated cognitive and sensorimotor maps without motion of target, background, or eye, with an “induced Roelofs effect”: a target inside an off-center frame appears biased opposite the direction of the frame. A frame displayed to the left of a subject’s center line, for example, will make a target inside the frame appear farther to the right than its actual position. The effect always influences perception, but in half of our subjects it did not influence pointing. Cognitive and sensorimotor maps interacted when the motor response was delayed; all subjects now showed a Roelofs effect for pointing, suggesting that the motor system was being fed from the biased cognitive map. A second experiment showed similar results when subjects made an open-ended cognitive response instead of a five-alternative forced choice. Experiment 3 showed that the results were not due to shifts in subjects’ perception of the felt straight-ahead position. In Experiment 4, subjects pointed to the target and judged its location on the same trial. Both measures showed a Roelofs effect, indicating that each trial was treated as a single event and that the cognitive representation was accessed to localize this event in both response modes.  相似文献   

3.
If a target toward which an individual moves his hand suddenly moves, he adjusts the movement of his hand accordingly. Does he use visual information on the target's velocity to anticipate where he will reach the target? These questions were addressed in the present study. Subjects (N = 6 in each of 4 experiments) were instructed to hit a disk with a rod as soon as it appeared on a screen. Trajectories of the hand toward stationary disks were compared with those toward disks that jumped leftward or rightward as soon as the subject's hand started moving toward the screen, and with those in which either the disk or the background started moving leftward or rightward. About 110 ms after the disk was suddenly displaced, the moving hand was diverted in the direction of the perturbation. When the background moved, the disk's perceived position shifted in the direction in which the background was moving, but the disk appeared to be moving in the opposite direction. When hitting such disks, subjects adjusted their movement in accordance with the perceived position, rather than moving their hand in the direction of the perceived motion in anticipation of the disk's future displacement. Thus, subjects did not use the perceived velocity to anticipate where they would reach the target but responded only to the change in position  相似文献   

4.
Anstis S  Ito H  Cavanagh P 《Perception》2006,35(7):959-964
A gray line that rotated about its own center against a stationary background of vertical stripes appeared to double in perceptual speed as it rotated through the vertical position and thus momentarily aligned with the background. Four factors may contribute to this speed-up: (i) landmarks, in which the tip of the moving vertical line moves horizontally across the maximum number of stationary stripes; (ii) orientation repulsion of the moving line by the vertical stripes, which may distort the line's perceived position and hence its perceived speed; (iii) the orientation of an induced brightness pattern along the line; and (iv) the motion of the induced brightness pattern, which moves physically most rapidly along the line when the line is near vertical. To test these possibilities, an annulus display provided landmarks but no intersections, and this almost abolished the effect. A rotating-slit display provided an oriented, moving pattern that mimicked the induced brightness but had no landmarks, and this increased the effect. We conclude that the motion, but not the orientation, of the intersections [option (iv)] was responsible for the illusion. The fact that this motion along the length of the line affected the perceived speed of the line orthogonal to its own length indicates a failure on the part of the visual system to fully decouple tangential from radial motion.  相似文献   

5.
The aim of the two present experiments was to examine the ontogenetic development of the dissociation between perception and action in children using the Duncker illusion. In this illusion, a moving background alters the perceived direction of target motion. Targets were held stationary while appearing to move in an induced displacement. In Experiment 1, 30 children aged 7, 9, and 12 years and 10 adults made a perceptual judgment or pointed as accurately as possible, with their index finger, to the last position of the target. The 7-year-old children were more perceptually deceived than the others by the Duncker illusion but there were no differences for the goal-directed pointing movements. In Experiment 2, 50 children aged 7, 8, 9, 10, and 11 years made a perceptual judgment or reproduced as accurately as possible, with a handle, the distance traveled by the target. Participants were perceptually deceived by the illusion, judging the target as moving although it was stationary. When reproducing the distance covered by the target, children were unaffected by the Duncker illusion. Our results suggest that the separation of the allocentric visual perception pathway from the egocentric action pathway occurs before 7 years of age.  相似文献   

6.
In the present research, we examined the influence of induced motion (IM) on open-loop pointing responses and the possibility that IM alters the registration of either eye or trunk position. In two experiments, subjects tracked a dot that oscillated vertically while a rectangular stimulus oscillated horizontally. The pairing of frame and dot motion caused the dot to appear to move on a slant, due to IM. In the first experiment, the subjects made judgments of the apparent slant of the dot's motion and, on separate trials, pointed open loop at the apparent location of the dot at the endpoints of its motion. Both responses were influenced by IM, although the effect on dot localization was less than the amount predicted by the IM, as indicated by the slant responses. Results were similar immediately following IM and after a 5-sec delay. In the second experiment, the subjects pointed open loop either at the apparent location of the endpoints of the tracked dot's motion or at the apparent location of one of three other briefly flashed stationary dots. The pointing responses directed toward the fixated IM target were influenced by IM to a greater extent than the responses directed toward the stationary dots. The results of the two experiments are inconsistent with the hypothesis that the effect of IM on open-loop pointing at the IM target results completely from altered perception of either eye or trunk position, since misregistration of either would be expected to influence, in a similar fashion, pointing at both the tracked dot and the briefly flashed, stationary targets.  相似文献   

7.
In Michotte's (1946/1963) launching effect paradigm, a moving launcher contacts a stationary target, and then the launcher becomes stationary and the target begins to move. In the experiments reported here, observers were presented with modifications of a launching effect display, and displacement in memory for targets was measured. Faster launcher velocities resulted in larger displacements for moving targets, and the effect of launcher velocity was larger with faster target velocities. Launcher velocity did not influence displacement of targets that remained stationary after contact. Increases in the distance travelled by moving targets after contact from the launcher resulted in smaller displacements. Displacement appeared to result from an expectation that impetus would be imparted from the launcher rather than from contact between the launcher and the target. Displacement patterns were consistent with naïve impetus theory and with the hypothesis that observers believed impetus from the launcher was imparted to the target and dissipated with subsequent target motion.  相似文献   

8.
Localization of moving sound   总被引:3,自引:0,他引:3  
The final position of a moving sound source usually appears to be displaced in the direction of motion. We tested the hypothesis that this phenomenon, termed auditory representational momentum, is already emerging during, not merely after, the period of motion. For this purpose, we investigated the localization of a moving sound at different points in time. In a dark anechoic environment, an acoustic target moved along the frontal horizontal plane. In the initial, middle, or final phase of the motion trajectory, subjects received a tactile stimulus and determined the current position of the moving target at the moment of the stimulus by performing either relative-judgment or pointing tasks. Generally, in the initial phase of the auditory motion, the position was perceived to be displaced in the direction of motion, but this forward displacement disappeared in the further course of the motion. When the motion stimulus had ceased, however, its final position was again shifted in the direction of motion. The latter result suggests that representational momentum in spatial hearing is a phenomenon specific to the final point of motion. Mental extrapolation of past trajectory information is discussed as a potential source of this perceptual displacement.  相似文献   

9.
The final position of a moving sound source usually appears to be displaced in the direction of motion. We tested the hypothesis that this phenomenon, termed auditory representational momentum, is already emerging during, not merely after, the period of motion. For this purpose, we investigated the localization of a moving sound at different points in time. In a dark anechoic environment, an acoustic target moved along the frontal horizontal plane. In the initial, middle, or final phase of the motion trajectory, subjects received a tactile stimulus and determined the current position of the moving target at the moment of the stimulus by performing either relative-judgment or pointing tasks. Generally, in the initial phase of the auditory motion, the position was perceived to be displaced in the direction of motion, but this forward displacement disappeared in the further course of the motion. When the motion stimulus had ceased, however, its final position was again shifted in the direction of motion. The latter result suggests that representational momentum in spatial hearing is a phenomenon specific to the final point of motion. Mental extrapolation of past trajectory information is discussed as a potential source of this perceptual displacement.  相似文献   

10.
Localization abilities of subjects in three perceptual-motor tasks were considered before and after an exposure to a visual distortion. During this distortion the subject observed his hand ballistically point to an invisible but audible target while either receiving or not receiving knowledge of results (KR) concerning pointing accuracy. Also, subjects either received a 1-or a 4-sec rest period between each of 30 exposure ballistic pointing actions. The pre-and postexposure tasks involved the ability of a subject to accurately point to an occluded and stationary auditory target, to point to the straight-ahead position in space, and to indicate when a moving, auditory target was perceived as being in the straight-ahead position. For these tasks, the pre-vs. postexposure localization difference scores are referred to as the negative aftereffect, the proprioceptive shift, and the auditory shift, respectively. Wilkinson’s (1971) two-component additive model (negative aftereffect= proprioceptive shift plus auditory shift) held when KR was given regardless of amount of rest between exposure pointing responses. With a 4-sec rest and no KR, the relationship between coordination components was nonadditive (negative aftereffect greater than proprioceptive shift plus auditory shift).  相似文献   

11.
T Heckmann  I P Howard 《Perception》1991,20(3):285-305
Induced motion (IM) is illusory motion of a stationary test target opposite to the direction of the real motion of the inducing stimulus. We define egocentric IM as an apparent motion of the test target relative to the observer, and vection-entrained IM as an apparent motion of a stationary object along with an apparent motion of the self (vection) induced by the same stimulus. These two forms of IM are often confounded, and tests for distinguishing between them have not been devised. We have devised such tests. Our test for egocentric IM relies on evidence that this form of IM is due mainly to a misregistration of eye movements when optokinetic nystagmus (OKN) is inhibited, and on evidence that OKN is evoked only by stimuli in the plane of convergence. Our test for vection-entrained IM relies on evidence that vection is evoked only by the more distant of two superimposed inducing stimuli. Thus we found egocentric IM to be induced without vection or vection-entrained IM when subjects converged on a foreground moving display with a stationary display in the background, and vection-entrained IM to be induced without egocentric IM when subjects converged on a stationary-foreground display with a moving display in the background. The two types of IM were evoked in opposite directions at the same time when subjects converged on a foreground moving display while a background display moved in the opposite direction. The two forms of IM showed no signs of interaction, and we conclude that they rely on independent motion mechanisms that operate within distinct frames of reference. A control experiment suggested that the depth adjacency effect in IM is determined by the depth adjacency of the inducing stimulus to convergence, not just to the test target.  相似文献   

12.
When a thin horizontal line is displaced, either left or right of straight ahead, or when a vertical line is displaced up or down, systematic changes occur in the binocular disparity associated with the target. In threeexperiments, Ss matched the orientation of displaced targets with a variable comparison line. Estimates of apparent displacement with a pointing technique were also made. Since head position was fixed, apparent displacement was mediated by the angle of ocular rotation. Near perfect matches were made with vertical targets, but horizontal targets produced errors suggestive of underestimation of apparent displacement. However, the pointing data did not yield clear evidence for this view. Control data denien the possible role of the induced effect (IE) in matching the horizontal targets, and the result were discussed in the context of orientation constancy based upon compensation for displacement.  相似文献   

13.
Hubbard TL  Courtney JR 《Perception》2008,37(9):1386-1398
The influence of a moving target on memory for the location of a briefly presented stationary object aligned with the initial location of that moving target was examined. Memory for the location of the stationary object was displaced backward (ie in the direction opposite to target motion), and memory for the initial location of the moving target was also displaced backward (consistent with an onset-repulsion effect); displacement of the stationary object did not differ from displacement of the moving target. Displacement in memory for the initial location of a moving target was not influenced by whether or not a stationary object aligned with that initial location was also presented. The results demonstrate that motion-induced mislocalization can occur in a direction other than the direction of motion, and are consistent with the hypothesis that dynamics of a moving target can influence memory for a nearby stationary object.  相似文献   

14.
To examine the effects of early visual experience on preference for biological motion (BM), newly hatched chicks were exposed to a point-light animation (a visual stimulus composed of identical light points) depicting the following features of a hen: a walking hen (a BM stimulus), a rotating hen (a non-BM stimulus), a pendulum stimulus, a random motion stimulus and a stationary pattern. Chicks were then tested in a binary choice task, choosing between walking-hen and rotating-hen stimuli. Males exhibited a preference for BM if they had been trained with any animation except the stationary pattern stimulus, suggesting that the BM preference was not learned, but induced by motion stimuli. We found a significant positive correlation between the number of approaches in training and the preference in the test, but locomotion alone did not cause preference for BM. In contrast, females exhibited a particularly strong preference for walking-hen stimuli, but only when they had been trained with it. Furthermore, females (but not males) trained with random motion showed a preference for walking hen over walking cat (a biological motion animation depicting a cat), possibly suggesting that females are choosier than males. Chicks trained with a stationary pattern and untrained controls did not show a significant preference. The induction of BM preference is discussed in terms of possible ecological background of the sex differences.  相似文献   

15.
The influence of a moving target on memory for the location of a briefly presented stationary object was examined. When the stationary object was aligned with the final portion of the moving target's trajectory, memory for the location of the stationary object was displaced forward (i.e., in the direction of motion of the moving target); the magnitude of forward displacement increased with increases in the velocity of the moving target, decreased with increases in the distance of the stationary object from the final location of the moving target, and increased and then decreased with increases in retention interval. It is suggested that forward displacement in memory for a stationary object aligned with the final portion of a moving target's trajectory reflects an influence of representational momentum of the moving target on memory for the location of the stationary object. Implications of the data for theories of representational momentum and motion induced mislocalization are discussed.  相似文献   

16.
It has been argued that two distinct maps of visual space are formed: a cognitive map that is susceptible to illusions, and a motor map that represents the physical world veridically. In the present study, subjects responded to a nonspatial attribute of a visual target stimulus by pressing a left or right key, while an illusory horizontal displacement of the target was induced. A Simon-type effect was obtained to the induced target motion or position shift-that is, responses were faster when the illusory target motion or location corresponded to the response position. Further experiments indicated that the observed effects cannot be accounted for by attentional shifts. These results suggest that the content of the cognitive map does not only influence perceptual judgments but is also responsible for the automatic activation of response codes. In other words, perception and action seem to be fed by a common, cognitively penetrable, spatial representation.  相似文献   

17.
It has been argued that two distinct maps of visual space are formed: a cognitive map that is susceptible to illusions, and a motor map that represents the physical world veridically. In the present study, subjects responded to a nonspatial attribute of a visual target stimulus by pressing a left or right key, while an illusory horizontal displacement of the target was induced. A Simon-type effect was obtained to the induced target motion or position shift—that is, responses were faster when the illusory target motion or location corresponded to the response position. Further experiments indicated that the observed effects cannot be accounted for by attentional shifts. These results suggest that the content of the cognitive map does not only influence perceptual judgments but is also responsible for the automatic activation of response codes. In other words, perception and action seem to be fed by a common, cognitively penetrable, spatial representation.  相似文献   

18.
Unidirectional motion of a uniplanar background induces a codirectional postural sway. It has been shown recently that fixation of a stationary foreground object induces a sway response in the opposite direction (Bronstein & Buckwell, 1997) when the background moves transiently. The present study investigated factors determining this contradirectional postural response. In the experiments presented, center of foot pressure and head displacements were recorded from normal subjects. The subjects faced a visual background of 2 x 3 m, at a distance of 1.5 m, which could be moved parallel to the interaural axis. Results showed that when the visual scene consisted solely of a moving background, the conventional codirectional postural response was elicited. When subjects were asked to fixate an earth-fixed foreground (window frame) placed between them and the moving background, a consistent postural response in the opposite direction to background motion was observed. In addition, we showed that this contradirectional postural response was not transient but was sustained for the 11 sec of background motion. We investigated whether this contradirectional postural response was the consequence of the induced movement of the foreground by background motion. Although induced movement was verbally reported by subjects when viewing an earth-fixed target projected onto the moving background, the contradirectional sway did not occur. These results indicate that foreground-background separation in depth was necessary for the contradirectional postural response to occur rather than induced movement. Another experiment showed that, when the fixated foreground was attached to the head of the observer, the contradirectional sway was not observed and was therefore unrelated to vergence. Finally, results showed that the contradirectional postural response was, in the main, monocularly mediated. We conclude that the direction of the postural sway produced by a moving background in a three-dimensional environment is determined primarily by motion parallax.  相似文献   

19.
Our original goal was to explore the nature of the grouping-by-movement phenomenon reported by Driver and Baylis (1989). In their studies, distractors that moved in common with a centrally located target had a larger influence on focused-attention performance than did more proximate but stationary distractors. These results seemed particularly important since they suggested, contrary to the predictions of space-based models of attention, that attention could be allocated to noncontiguous regions of the visual field. Their results also suggested mandatory processing of stimuli with common motion. Unfortunately, we were unable to replicate this grouping-by-movement effect. In the conditions of Experiment 1 in which we replicated Driver and Baylis’s methodology, stationary distractors produced a larger response-compatibility effect than did the more distant distractors that moved in common with the target. In Experiment 2, we redundantly coded the centrally located target and the far distractors with common movement and color. However, the results were identical to those obtained in Experiment J. The stationary near distractors that appeared in a different color from the target and the far distractors produced the largest response-compatibility effect. In a final experiment, we attempted to compensate for the reduced acuity of the moving distractors by adjusting their size by a cortical magnification factor. However, even with this manipulation, we found a larger response-compatibility effect for the stationary near distractors than for the moving distant distractors. Our results suggest that subjects are capable of selectively processing a target item that moves in common with distractors.  相似文献   

20.
In two experiments induced movement of an object was produced to demonstrate that movement of the background influences the perceived localization of the object in space. The Roelofs (asymmetry) effect could be used to explain only part of the shift in localization in Experiment1. The asymmetry effect was excluded from Experiment2 by the procedure employed. It was concluded that the Roelofs effect is a sufficient, but not necessary, condition for the effects of induced movement to occur, and that relative displacement of the target and background plays an important part in the illusion. Furthermore, it was shown that the effects of induced movement can occur even when the border of the background remains stationary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号