首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estrous behavior in rodents is triggered by the binding of progesterone (P) to its intracellular receptor (PR). Non-steroidal agents (i.e., gonadotropin-releasing hormone, noradrenaline, dopamine and others), acting at the membrane, can facilitate estrous behavior in estrogen-primed rats. This action is mediated through the generation of second messengers (cyclic AMP, cyclic GMP, calcium) which, in turn, phosphorylate through diverse kinase systems (protein kinases A, G or C) either the PR or associated effector proteins linking the PR to the trans-activation machinery. P or its metabolites also activate cyclic AMP-signaling pathways by acting directly on the membrane or by modulating neurotransmitter release. Molecular processes resulting from second messenger signaling pathways and those from the progesterone-RP interaction synergize to elicit a full behavioral response.  相似文献   

2.
Persistent, bidirectional changes in synaptic signaling (that is, potentiation and depression of the synapse) can be induced by the precise timing of individual pre- and postsynaptic action potentials. However, far less attention has been paid to the ability of paired trains of action potentials to elicit persistent potentiation or depression. We examined plasticity following the pairing of spike trains in the touch mechanosensory neuron (T cell) and S interneuron (S cell) in the medicinal leech. Long-term potentiation (LTP) of T to S signaling was elicited when the T-cell spike train preceded the S-cell train. An interval 0 to +1 sec between the T- and S-cell spike trains was required to elicit long-term potentiation (LTP), and this potentiation was NMDA receptor (NMDAR)-dependent. Long-term depression (LTD) was elicited when S-cell activity preceded T-cell activity and the interval between the two spike trains was -0.2 sec to -10 sec. This surprisingly broad temporal window involved two distinct cellular mechanisms; an NMDAR-mediated LTD (NMDAR-LTD) when the pairing interval was relatively brief (<-1 sec) and an endocannabinoid-mediated LTD (eCB-LTD) when longer pairing intervals were used (-1 to -10 sec). This eCB-LTD also required activation of a presynaptic transient receptor potential vanilloid (TRPV)-like receptor, presynaptic Ca(2+) release from intracellular stores and activation of voltage-gated Ca(2+) channels (VGCCs). These findings demonstrate that the pairing of spike trains elicits timing-dependent forms of LTP and LTD that are supported by a complex set of cellular mechanisms involving NMDARs and endocannabinoid activation of TRPV-like receptors.  相似文献   

3.
The dopaminergic modulation of long-term potentiation (LTP) has been studied well, but the mechanism by which dopamine induces LTP (DA-LTP) in CA1 pyramidal neurons is unknown. Here, we report that DA-LTP in basal dendrites is dependent while in apical dendrites it is independent of activation of L-type voltage-gated calcium channels (VDCC). Activation via NMDAR is critical for the induction of DA-LTP in both apical and basal dendrites, but only BDNF is required for the induction and maintenance of DA-LTP in apical dendrites. We report that dopaminergic modulation of LTP is lamina-specific at the Schaffer collateral/commissural synapses in the CA1 region.  相似文献   

4.
Memory formation requires cAMP signaling; thus, this cascade has been of great interest in the search for cognitive enhancers. Given that medications are administered long-term, we determined the effects of chronically increasing cAMP synthesis in the brain by expressing a constitutively active isoform of the G-protein subunit Galphas (Galphas*) in postnatal forebrain neurons of mice. Previously, we showed that Galphas* mice exhibit increased adenylyl cyclase activity but decreased cAMP levels in cortex and hippocampus due to a PKA-dependent increase in total cAMP phosphodiesterase (PDE) activity. Here, we extend previous findings by determining if Galphas* mice show increased activity of specific PDE families that are regulated by PKA, if Galphas* mice show PKA-dependent deficits in fear memory, and if these memory deficits are associated with PKA-dependent alterations in neuronal activity as mapped by Arc mRNA expression. Consistent with previous findings, we show here that Galphas* mice exhibit a significant compensatory increase in cAMP PDE1 activity and a trend toward increased cAMP PDE4 activity. Further, inhibiting the presumably elevated PKA activity in Galphas* mice fully rescues short- and long-term memory deficits in a fear-conditioning task, while extending the training session from one to four CS-US pairings partially rescues these deficits. Mapping of Arc mRNA levels suggests these PKA-dependent memory deficits may be related to decreased neuronal activity specifically within the cortex. Galphas* mice show decreased Arc mRNA expression in CA1, orbital cortex, and cortical regions surrounding the hippocampus; however, only the deficits in cortical regions surrounding the hippocampus are PKA dependent. Our results imply that chronically stimulating targets upstream of cAMP may detrimentally affect cognition.  相似文献   

5.
Increases in cyclic adenosine monophosphate (cAMP) are proposed to initiate learning in a wide variety of species. Here, we measure changes in cAMP in the olfactory bulb prior to, during, and following a classically conditioned odor preference trial in rat pups. Measurements were taken up to the point of maximal CREB phosphorylation in olfactory bulb mitral cells. Using both drug and natural unconditioned stimuli we found effective learning was associated with an increase in cAMP at the end of the conditioning trial, followed by a decrease 5 min later. This early timing of a transient cAMP increase occurred only when the odor was paired with an effective drug or natural unconditioned stimulus (US). The data support the hypothesis that the rate of adenylate cyclase activation is enhanced by pairing calcium and G-protein activation and that the timing of transient cAMP signaling is critical to the initiation of classical conditioning.  相似文献   

6.
The induction of long-term potentiation (LTP) and long-term depression (LTD) at excitatory synapses in the hippocampus can be strongly modulated by patterns of synaptic stimulation that otherwise have no direct effect on synaptic strength. Likewise, patterns of synaptic stimulation that induce LTP or LTD not only modify synaptic strength but can also induce lasting changes that regulate how synapses will respond to subsequent trains of stimulation. Collectively known as metaplasticity, these activity-dependent processes that regulate LTP and LTD induction allow the recent history of synaptic activity to influence the induction of activity-dependent changes in synaptic strength and may thus have an important role in information storage during memory formation. To explore the cellular and molecular mechanisms underlying metaplasticity, we investigated the role of metaplasticity in the induction of LTP by υ-frequency (5-Hz) synaptic stimulation in the hippocampal CA1 region. Our results show that brief trains of υ-frequency stimulation not only induce LTP but also activate a process that inhibits the induction of additional LTP at potentiated synapses. Unlike other forms of metaplasticity, the inhibition of LTP induction at potentiated synapses does not appear to arise from activity-dependent changes in NMDA receptor function, does not require nitric oxide signaling, and is strongly modulated by β-adrenergic receptor activation. Together with previous findings, our results indicate that mechanistically distinct forms of metaplasticity regulate LTP induction and suggest that one way modulatory transmitters may act to regulate synaptic plasticity is by modulating metaplasticity.  相似文献   

7.
There is no hypothesis to explain how direct and indirect basal ganglia (BG) pathways interact to reach a balance during the learning of motor procedures. Both pathways converge in the substantia nigra pars reticulata (SNr) carrying the result of striatal processing. Unfortunately, the mechanisms that regulate synaptic plasticity in striatonigral (direct pathway) synapses are not known. Here, we used electrophysiological techniques to describe dopamine D(1)-receptor-mediated facilitation in striatonigral synapses in the context of its interaction with glutamatergic inputs, probably coming from the subthalamic nucleus (STN) (indirect pathway) and describe a striatonigral cannabinoid-dependent long-term synaptic depression (LTD). It is shown that striatonigral afferents exhibit D(1)-receptor-mediated facilitation of synaptic transmission when NMDA receptors are inactive, a phenomenon that changes to cannabinoid-dependent LTD when NMDA receptors are active. This interaction makes SNr neurons become coincidence-detector switching ports: When inactive, NMDA receptors lead to a dopamine-dependent enhancement of direct pathway output, theoretically facilitating movement. When active, NMDA receptors result in LTD of the same synapses, thus decreasing movement. We propose that SNr neurons, working as logical gates, tune the motor system to establish a balance between both BG pathways, enabling the system to choose appropriate synergies for movement learning and postural support.  相似文献   

8.
The effectiveness of tetraethylammonium (TEA) and high-frequency stimulation (HFS) in inducing long-term synaptic modification is compared in CA1 and dentate gyrus (DG) in vitro. High-frequency stimulation induces long-term potentiation (LTP) at synapses of both perforant path-DG granule cell and Schaffer collateral-CA1 pyramidal cell pathways. By contrast, TEA (25 mM) induces long-term depression in DG while inducing LTP in CA1. The mechanisms underlying the differential effect of TEA in CA1 and DG were investigated. It was observed that T-type voltage-dependent calcium channel (VDCC) blocker, Ni2+ (50 microM), partially blocked TEA-induced LTP in CA1. A complete blockade of the TEA-induced LTP occurred when Ni2+ was applied together with the NMDA receptor antagonist, D-APV. The L-type VDCC blocker, nifidipine (20 microM), had no effect on CA1 TEA-induced LTP. In DG of the same slice, TEA actually induced long-term depression (LTD) instead of LTP, an effect that was blocked by D-APV. Neither T-type nor L-type VDCC blockade could prevent this LTD. When the calcium concentration in the perfusion medium was increased, TEA induced a weak LTP in DG that was blocked by Ni2+. During exposure to TEA, the magnitude of field EPSPs was increased in both CA1 and DG, but the increase was substantially greater in CA1. Tetraethylammonium application also was associated with a large, late EPSP component in CA1 that persisted even after severing the connections between CA3 and CA1. All of the TEA effects in CA1, however, were dramatically reduced by Ni2+. The results of this study indicate that TEA indirectly acts via both T-type VDCCs and NMDA receptors in CA1 and, as a consequence, induces LTP. By contrast, TEA indirectly acts via only NMDA receptors in DG and results in LTD. The results raise the possibility of a major synaptic difference in the density and/or distribution of T-type VDCCs and NMDA receptors in CA1 and DG of the rat hippocampus.  相似文献   

9.
In one computational model of hippocampal function, the entorhinal cortical input to CA1 is hypothesized to play a key role in the ability of CA1 to decode CA3 recodings. Here, we develop a modification of this CA1 decoder hypothesis that is applicable to several computational theories of hippocampal function, and then we electrophysiologically investigate one assumption of this new hypothesis. First, using biologically realistic estimates, we calculate that CA3-induced CA1 excitation is too high and that inhibition plausibly plays a role in this CA1 decoder model. Thus motivated, we turn to a physiological demonstration to substantiate the plausibility of the proposed mechanism. Using the rat hippocampal slice, we examine an interlaminar interaction between the distal perforant path input to hippocampal CA1 stratum moleculare and the more proximal Schaffer collateral input to stratum radiatum. Perforant path activation provides sufficient inhibition to block homosynaptic long-term potentiation elicited by a suitably strong stratum radiatum input. For this interlaminar interaction to be most effective, perforant path activation must both precede and follow Schaffer collateral activation. Perforant path-evoked inhibition in CA1 can thus serve as a viable mechanism in the learned decoder theory of hippocampal CA1.  相似文献   

10.
cAMP-dependent protein kinase (PKA) is critical for the expression of some forms of long-term potentiation (LTP) in area CA1 of the mouse hippocampus and for hippocampus-dependent memory. Exposure to spatially enriched environments can modify LTP and improve behavioral memory in rodents, but the molecular bases for the enhanced memory performance seen in enriched animals are undefined. We tested the hypothesis that exposure to a spatially enriched environment may alter the PKA dependence of hippocampal LTP. Hippocampal slices from enriched mice showed enhanced LTP following a single burst of 100-Hz stimulation in the Schaffer collateral pathway of area CA1. In slices from nonenriched mice, this single-burst form of LTP was less robust and was unaffected by Rp-cAMPS, an inhibitor of PKA. In contrast, the enhanced LTP in enriched mice was attenuated by Rp-cAMPS. Enriched slices expressed greater forskolin-induced, cAMP-dependent synaptic facilitation than did slices from nonenriched mice. Enriched mice showed improved memory for contextual fear conditioning, whereas memory for cued fear conditioning was unaffected following enrichment. Our data indicate that exposure of mice to spatial enrichment alters the PKA dependence of LTP and enhances one type of hippocampus-dependent memory. Environmental enrichment can transform the pharmacological profile of hippocampal LTP, possibly by altering the threshold for activity-dependent recruitment of the cAMP-PKA signaling pathway following electrical and chemical stimulation. We suggest that experience-dependent plasticity of the PKA dependence of hippocampal LTP may be important for regulating the efficacy of hippocampus-based memory.  相似文献   

11.
The effectiveness of tetraethylammonium (TEA) and high-frequency stimulation (HFS) in inducing long-term synaptic modification is compared in CA1 and dentate gyrus (DG) in vitro. High-frequency stimulation induces long-term potentiation (LTP) at synapses of both perforant path-DG granule cell and Schaffer collateral-CA1 pyramidal cell pathways. By contrast, TEA (25 mM) induces long-term depression in DG while inducing LTP in CA1. The mechanisms underlying the differential effect of TEA in CA1 and DG were investigated. It was observed that T-type voltage-dependent calcium channel (VDCC) blocker, Ni2+ (50 μM), partially blocked TEA-induced LTP in CA1. A complete blockade of the TEA-induced LTP occurred when Ni2+ was applied together with the NMDA receptor antagonist, D-APV. The L-type VDCC blocker, nifidipine (20 μM), had no effect on CA1 TEA-induced LTP. In DG of the same slice, TEA actually induced long-term depression (LTD) instead of LTP, an effect that was blocked by D-APV. Neither T-type nor L-type VDCC blockade could prevent this LTD. When the calcium concentration in the perfusion medium was increased, TEA induced a weak LTP in DG that was blocked by Ni2+. During exposure to TEA, the magnitude of field EPSPs was increased in both CA1 and DG, but the increase was substantially greater in CA1. Tetraethylammonium application also was associated with a large, late EPSP component in CA1 that persisted even after severing the connections between CA3 and CA1. All of the TEA effects in CA1, however, were dramatically reduced by Ni2+. The results of this study indicate that TEA indirectly acts via both T-type VDCCs and NMDA receptors in CA1 and, as a consequence, induces LTP. By contrast, TEA indirectly acts via only NMDA receptors in DG and results in LTD. The results raise the possibility of a major synaptic difference in the density and/or distribution of T-type VDCCs and NMDA receptors in CA1 and DG of the rat hippocampus.  相似文献   

12.
13.
Specific receptors for pituitary adenylate cyclase-activating polypeptide (PACAP), a novel peptide with neuroregulatory and neurotrophic functions, have been identified recently in different brain regions, including the hippocampus. In this study, we examined the effects of PACAP-38 on the excitatory postsynaptic field potentials (fEPSPs) evoked at the Schaffer collateral-CA1 synapses. Brief bath application of PACAP-38 (0.05 nM) induced a long-lasting facilitation of the basal transmission. Enhancement of this response was occluded in part by previous high-frequency-induced long-term potentiation (LTP). PACAP-38 did not significantly alter the paired-pulse facilitation (PPF). PACAP-38 has been shown to have a presynaptic effect on the septohippocampal cholinergic terminals, which results in an increase in basal acetylcholine (ACh) release. To assess whether the PACAP-38 enhancement of CA1 synapses was related to the activation of the cholinergic system we examined the effect of this peptide in the presence of atropine, a muscarinic receptor antagonist. The enhancement of the fEPSPs by PACAP-38 was blocked by bath application of atropine. These results show that PACAP-38 induces facilitation of hippocampal synaptic transmission through activation of the cholinergic system via the muscarinic receptors.  相似文献   

14.
The cAMP/PKA pathway plays a critical role in learning and memory systems in animals ranging from mice to Drosophila to Aplysia. Studies of olfactory learning in Drosophila suggest that altered expression of either positive or negative regulators of the cAMP/PKA signaling pathway beyond a certain optimum range may be deleterious. Here we provide genetic evidence of the behavioral and physiological effects of increased signaling through the cAMP/PKA pathway in mice. We have generated transgenic mice in which the expression of a constitutively active form of Gsalpha (Gsalpha* Q227L), the G protein that stimulates adenylyl cyclase activity, is driven in neurons within the forebrain by the promoter from the CaMKIIalpha gene. Despite significantly increased adenylyl cyclase activity, Gsalpha* transgenic mice exhibit PKA-dependent decreases in levels of cAMP due to a compensatory up-regulation in phosphodiesterase activity. Interestingly, Gsalpha* transgenic mice also exhibit enhanced basal synaptic transmission. Consistent with a role for the cAMP/PKA pathway in learning and memory, Gsalpha* transgenic mice show impairments in spatial learning in the Morris water maze and in contextual and cued fear conditioning tasks. The learning deficits observed in these transgenic mice suggest that associative and spatial learning requires regulated Gsalpha protein signaling, much as does olfactory learning in Drosophila.  相似文献   

15.
Most studies of long-term potentiation (LTP) have focused on potentiation induced by the activation of postsynaptic NMDA receptors (NMDARs). However, it is now apparent that NMDAR-dependent signaling processes are not the only form of LTP operating in the brain [Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44, 5–21]. Previously, we have observed that LTP in leech central synapses made by the touch mechanosensory neurons onto the S interneuron was NMDAR-independent [Burrell, B. D., & Sahley, C. L. (2004). Multiple forms of long-term potentiation and long-term depression converge on a single interneuron in the leech CNS. Journal of Neuroscience, 24, 4011–4019]. Here we examine the cellular mechanisms mediating T-to-S (T → S) LTP and find that its induction requires activation of metabotropic glutamate receptors (mGluRs), voltage-dependent Ca2+ channels (VDCCs) and protein kinase C (PKC). Surprisingly, whenever LTP was pharmacologically inhibited, long-term depression (LTD) was observed at the tetanized synapse, indicating that LTP and LTD were activated at the same time in the same synaptic pathway. This co-induction of LTP and LTD likely plays an important role in activity-dependent regulation of synaptic transmission.  相似文献   

16.
Dopamine has been demonstrated to be involved in the modulation of long-term potentiation (LTP) in the CA1 region of the hippocampus. As monoamine transporter blockade will increase the actions of endogenous monoamine neurotransmitters, the effect of a dopamine transporter (DAT) antagonist on LTP was assessed using field excitatory postsynaptic potentials recorded in the CA1 region of the rat hippocampal slice preparation. Application of the DAT-specific blocker GBR 12,935 produced a significant enhancement in LTP of Schaffer collateral synapses in the CA1 at concentrations as low as 100 nM. A selective D1/D5 dopamine receptor antagonist (SCH 23,390, 1 microM) did not affect the ability of GBR 12,935 to enhance LTP, whereas application of the D3 dopamine receptor antagonist U 99,194 (1 microM) blocked the GBR 12,935-induced enhancement in LTP. In addition, a D3 dopamine receptor agonist (7-OH-DPAT, 1 microM) caused a significant increase in LTP, an effect that was also blocked by U 99,194 (3 microM). These results suggest that either endogenously released dopamine (facilitated by DAT blockade) or exogenously applied dopamine agonist can act to increase LTP in the CA1 of the hippocampus via activation of the D3 subtype of dopamine receptor.  相似文献   

17.
Extracellular guanine-based purines, namely the nucleotides GTP, GDP, GMP and the nucleoside guanosine, exert important neuroprotective and neuromodulator roles in the central nervous system, which may be related to inhibition of the glutamatergic neurotransmission activity. In this study, we investigated GMP effects on mice inhibitory avoidance performance and the dependence on its conversion to guanosine for such effect, by using the ecto-5'-nucleotidase specific inhibitor AOPCP. We also investigated if this conversion occurs in the central nervous system or peripherally, and if guanosine and GMP affect nociception by the tail-flick test. I.p. GMP or guanosine (7.5 mg/kg) or i.c.v. GMP (480 nmol) pretraining administration was amnesic for the inhibitory avoidance task. I.c.v. AOPCP (1 nmol) administration completely reversed the amnesic effect of i.c.v. GMP, but not of i.p. GMP, indicating that peripheral conversion of GMP to guanosine is probably relevant to this effect. AOPCP alone did not interfere with the performance. Furthermore, tail-flick measurement was unaffected by i.p. GMP and guanosine, suggesting that the amnesic effect of both purines was not due to some antinociceptive effect against the footshock used in the task. All these data together, in accordance to those previously observed in studies involving glutamate uptake and seizures reinforce the idea that guanosine is the specific extracellular guanine-based purines effector and indicate that its conversion occurs not only in the central nervous system but also peripherally.  相似文献   

18.
An ovarian steroid-dependent cycle of synaptogenesis and synapse shedding occurs naturally in the hippocampus of the adult female rat. The newly formed axospinous synapses in CA1 may differ functionally from extant axospinous synapses, e.g., in terms of their modifiability. Here we assess whether estradiol alters the induction of homosynaptic long-term depression of the Schaffer collateral-CA1 synapses in vitro. Sprague-Dawley rats were bilaterally ovariectomized and, beginning 6-8 days later, received a series of injections of either 17beta-estradiol or sesame oil sc. Field potentials were recorded in hippocampal slices. In estradiol-treated animals, asynchronous, low-frequency stimulation led to significant long-term depression of the activated synapses in CA1 s. radiatum and no change of the inactive synapses in s. oriens. In contrast, this conditioning stimulation did not significantly alter any CA1 responses in oil-treated control animals. Subsequent high-frequency conditioning stimulation significantly potentiated the activated s. radiatum synapses in both estradiol- and oil-treated animals. Thus, given the stimulation conditions used here, estradiol enables the induction of homosynaptic long-term depression at the CA3-CA1 synapses in adult females.  相似文献   

19.
The current study employed aged and young male Fischer 344 rats to examine the relationship between long-term depression (LTD), age, and memory. Memory performance was measured on two tasks that are sensitive to hippocampal function; inhibitory avoidance and spatial discrimination on the Morris water maze. The slope of the extracellular excitatory postsynaptic field potential was recorded from CA3-CA1 synapses in hippocampal slices. Low frequency stimulation (LFS) induced a modest LTD only in aged animals under standard recording conditions. The decrease in synaptic transmission examined only in aged animals correlated with memory scores on the spatial task and LTD was not observed in aged animals with the highest memory scores. LTD induction was facilitated by increasing the Ca(2+)/Mg(2+) ratio of the recording medium or employing a paired-pulse stimulation paradigm. Age differences disappeared when LFS was delivered under conditions of elevated Ca(2+)/Mg(2+) in the recording medium. Using multiple induction episodes under conditions which facilitate LTD-induction, no age-related difference was observed in the maximum level of LTD. The results indicate that the increased susceptibility to LTD induction is associated with impaired memory and results from a shift in the induction process. The possible relationship between LTD and memory function is discussed.  相似文献   

20.
Neonatal handling is known to induce long-lasting changes in behavioral and neuroendocrine responses to stress. Since the central noradrenergic system participates in the adaptive responses to stressful conditions we have analyzed the effects of postnatal handling on beta-adrenoceptor binding sites and isoprenaline- and forskolin-stimulated cyclic AMP accumulation in cerebral cortex, hippocampus and cerebellum of rats at 1 and 3 months of age. Handled animals showed reduced emotional reactivity and lower ACTH and corticosterone secretion after stress. Binding studies using [(3) H]CGP12-177 revealed increased beta-adrenoceptor binding sites in handled rats in cerebellum and cerebral cortex with no changes in hippocampus, and decreased affinity in all cerebral regions. Handling reduced basal levels of cyclic AMP in hippocampus and cerebellum but not in cerebral cortex. The concentration-response curves of cyclic AMP to isoprenaline were displaced to the right in cerebellum of handled rats without differences in Emax; however, Emax was significantly reduced in cerebral cortex and hippocampus. Direct stimulation of the catalytic subunit of adenylyl cyclase by forskolin reduced the efficiency in hippocampus and cerebellum, but not in cerebral cortex of handled animals. It is concluded that neonatal handling reduces the binding properties of beta-adrenoceptor and its primary biochemical responses in the young rat brain, which may account for the reduced responsiveness to stress attained in the handled rats, and may explain the persistence of the effect. The present study emphasizes the role of the central noradrenergic system in modulating the behavioral and neurendocrine responses to neonatal handling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号