首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of a moving target on memory for the location of a briefly presented stationary object was examined. When the stationary object was aligned with the final portion of the moving target's trajectory, memory for the location of the stationary object was displaced forward (i.e., in the direction of motion of the moving target); the magnitude of forward displacement increased with increases in the velocity of the moving target, decreased with increases in the distance of the stationary object from the final location of the moving target, and increased and then decreased with increases in retention interval. It is suggested that forward displacement in memory for a stationary object aligned with the final portion of a moving target's trajectory reflects an influence of representational momentum of the moving target on memory for the location of the stationary object. Implications of the data for theories of representational momentum and motion induced mislocalization are discussed.  相似文献   

2.
Observers viewed a moving target, and after the target vanished, indicated either the initial position or the final position of the target. In Experiment 1, an auditory tone cued observers to indicate either the initial position or the final position; in Experiment 2, different groups of observers indicated the initial position or the final position. Judgments of the initial position were displaced backward in the direction opposite to motion, and judgments of the final position were displaced forward in the direction of motion. The data suggest that the remembered trajectory is longer than the actual trajectory, and the displacement pattern is not consistent with the hypothesis that representational momentum results from a distortion of memory for the location of a trajectory.  相似文献   

3.
The possibility of anisotropies in visual space in and near the final location of a moving target was examined. Experiments 1 and 2 presented a moving target, and after the target vanished, participants indicated the final location of the leading or trailing edge of the target. Memory for both edges was displaced forward from the actual final locations, and the magnitude of displacement was smaller for the leading edge. Experiments 3 and 4 also presented stationary objects in front of and behind the final location of the target, and participants indicated the location of the nearest or farthest edge of one of the stationary objects. Memory for the near or far edge of an object in front of the target was displaced backward, and memory for the near or far edge of an object behind the target was displaced forward; the magnitude of displacement was larger for objects in front of the target and when the edge was farther away. The findings (a) suggest representational momentum is associated with an anisotropy of visual space that extends across and outward from the moving target and (b) are consistent with previous findings regarding estimation of time-to-contact, anorthoscopic perception, and memory psychophysics.  相似文献   

4.
Memory for targets moving in depth and for stationary targets was examined in five experiments. Memory for targets moving in depth was displaced behind the target with slower target velocities (longer ISIS and retention intervals) and beyond the target with faster target velocities (shorter ISIS and retention intervals), and the overall magnitude of forward displacement for motion in depth was less than the overall magnitude of forward displacement for motion in the picture plane. Memory for stationary targets was initially displaced away from the observer, but memory for smaller stationary targets was subsequently displaced toward the observer and memory for larger stationary targets was subsequently displaced away from the observer; memory for the top or bottom edge of a stationary target was displaced inside the target perimeter. The data are consistent with Freyd and Johnson's (1987) two-component model of the time course of representational momentum and with Intraub et al.'s (1992) two-component model of boundary extension.  相似文献   

5.
The judged vanishing point of a target undergoing apparent motion in a horizontal, vertical, or oblique direction was examined. In Experiment 1, subjects indicated the vanishing point by positioning a crosshair. Judged vanishing point was displaced forward in the direction of motion, with the magnitude of displacement being largest for horizontal motion, intermediate for oblique motion, and smallest for vertical motion. In addition, the magnitude of displacement increased with faster apparent velocities. In Experiment 2, subjects judged whether a stationary probe presented after the moving target vanished was at the same location where the moving target vanished. Probes were located along the axis of motion, and probes located beyond the vanishing point evidenced a higher probability of a same response than did probes behind the vanishing point. In Experiment 3, subjects judged whether a stationary probe presented after the moving target vanished was located on a straight-line extension of the path of motion of the moving target. Probes below the path of motion evidenced a higher probability of a same response than did probes above the path of motion for horizontal and ascending oblique motion; probes above the path of motion evidenced a higher probability for a same response than did probes below the path of motion for descending oblique motion. Overall, the pattern of results suggests that the magnitude of displacement increases as proximity to a horizontal axis increases, and that in some conditions there may be a component analogous to a gravitational influence incorporated into the mental representation.  相似文献   

6.
Effects of cuing the onset (initial) location of a moving target on memory for the onset location of that target were examined. If a cue presented prior to target onset indicated the location where that target would appear, the onset repulsion effect (in which the judged initial location of the target was displaced in the direction opposite to target motion) was decreased, and the onset repulsion effect was smaller if the cue was valid than if the cue was invalid. If a cue presented during target motion or after the target vanished indicated the location where that target had appeared, the onset repulsion effect was eliminated. The data (1) suggest that positional uncertainty might contribute to the onset repulsion effect, (2) provide the first evidence of an effect of expectancy regarding target trajectory on the onset repulsion effect, and (3) are partially consistent with previous data involving effects of attention and spatial cuing on the Fröhlich effect and on representational momentum.  相似文献   

7.
In A. Michotte's (1946/1963) launching effect, a moving launcher contacts a stationary target, and then the launcher becomes stationary and the target begins to move. In this experiment, observers viewed modifications of a launching effect display, and displacement in memory for the location of targets was measured. Forward displacement of targets in launching effect displays was decreased relative to that of targets (a) that were presented in isolation and either moved at a constant fast or slow velocity or decelerated or (b) that moved in a direction orthogonal to previous motion of the launcher. Possible explanations involving a deceleration of motion or landmark attraction effects were ruled out. Displacement patterns were consistent with naive impetus theory and the hypothesis that observers believed impetus from the launcher was imparted to the target and then dissipated.  相似文献   

8.
Six experiments examined displacement in memory for the location of the line in illusory line motion (ILM; appearance or disappearance of a stationary cue is followed by appearance of a stationary line that is presented all at once, but the stationary line is perceived to “unfold” or “be drawn” from the end closest to the cue to the end most distant from the cue). If ILM was induced by having a single cue appear, then memory for the location of the line was displaced toward the cue, and displacement was larger if the line was closer to the cue. If ILM was induced by having one of two previously visible cues vanish, then memory for the location of the line was displaced away from the cue that vanished. In general, the magnitude of displacement increased and then decreased as retention interval increased from 50 to 250 ms and from 250 to 450 ms, respectively. Displacement of the line (a) is consistent with a combination of a spatial averaging of the locations of the cue and the line with a relatively weaker dynamic in the direction of illusory motion, (b) might be implemented in a spreading activation network similar to networks previously suggested to implement displacement resulting from implied or apparent motion, and (c) provides constraints and challenges for theories of ILM.  相似文献   

9.
Displacements in the remembered location of stimuli in displays based on Michotte’s (1946/1963) launching effect and entraining effect were examined. A moving object contacted an initially stationary target, and the target began moving. After contacting the target, the mover became stationary (launching trials) or continued moving in the same direction and remained adjacent to the target (entraining trials). In launching trials, forward displacement was smaller for targets than for movers; in entraining trials, forward displacement was smaller for movers than for targets. Also, forward displacement was smaller for targets in launching trials than for targets in entraining trials. Data are consistent with a hypothesis that the launching effect involves an attribution that the mover imparted to the target a dissipating impetus that was responsible for target motion. Introspective experience of a perception of physical causality in the launching effect might result because behavior of movers and targets is consistent with that predicted by an impetus heuristic.  相似文献   

10.
Memory for the angular size of a chevron (V) shaped target was examined in four experiments. When the target was stationary, memory was displaced inwards (i.e., towards a smaller angle), and the magnitude of displacement increased with increases in absolute angle size. When the target moved vertically or horizontally, memory was displaced inwards, but the effect of absolute angle size was weakened, and displacement was not influenced by whether the direction of motion and the direction in which the angle pointed were the same or different. When the target expanded or contracted (i.e., increased or decreased in angular size), memory for expanding targets was displaced inwards more than was memory for contracting targets, and displacement was not influenced by whether motion was coherent or incoherent. Implications of the data for the possibility of dynamic aspects of mental representation based on the shape of a stimulus are discussed.  相似文献   

11.
Getzmann S  Lewald J  Guski R 《Perception》2004,33(5):591-599
The final position of a moving visual object usually appears to be displaced in the direction of motion. We investigated this phenomenon, termed representational momentum, in the auditory modality. In a dark anechoic environment, an acoustic target (continuous noise or noise pulses) moved from left to right or from right to left along the frontal horizontal plane. Listeners judged the final position of the target using a hand pointer. Target velocity was 8 degrees s(-1) or 16 degrees s(-1). Generally, the final target positions were localised as displaced in the direction of motion. With presentation of continuous noise, target velocity had a strong influence on mean displacement: displacements were stronger with lower velocity. No influence of sound velocity on displacement was found with motion of pulsed noise. Although these findings suggest that the underlying mechanisms may be different in the auditory and visual modality, the occurrence of displacements indicates that representational-momentum-like effects are not restricted to the visual modality, but may reflect a general phenomenon with judgments of dynamic events.  相似文献   

12.
翟坤  张志杰 《心理科学》2012,35(6):1309-1314
为揭示注意对表征动量的影响机制,我们结合线索提示和表征动量范式,通过两个实验比较高、低相关线索分别在诱导期间与保持间隔呈现对表征动量的影响,结果发现:(1)高相关线索的时间特性主效应不显著,最终位置均发生边缘性的向前偏移。(2)低相关线索呈现在诱导期间时,表征动量显著;呈现在保持间隔时,发生向后偏移。这些表明,随着注意增大,表征动量减小;高相关线索更有利于定位,而低相关线索易受时间特性的影响。研究结果验证表征动量的双加工理论。  相似文献   

13.
In Michotte's (1946/1963) launching effect paradigm, a moving launcher contacts a stationary target, and then the launcher becomes stationary and the target begins to move. In the experiments reported here, observers were presented with modifications of a launching effect display, and displacement in memory for targets was measured. Faster launcher velocities resulted in larger displacements for moving targets, and the effect of launcher velocity was larger with faster target velocities. Launcher velocity did not influence displacement of targets that remained stationary after contact. Increases in the distance travelled by moving targets after contact from the launcher resulted in smaller displacements. Displacement appeared to result from an expectation that impetus would be imparted from the launcher rather than from contact between the launcher and the target. Displacement patterns were consistent with naïve impetus theory and with the hypothesis that observers believed impetus from the launcher was imparted to the target and dissipated with subsequent target motion.  相似文献   

14.
Memory for the initial and final positions of moving targets was examined. When targets appeared adjacent to the boundary of a larger enclosing window, memory for initial position exhibited a Fr?hlich effect (i.e., a displacement forward), and when distance of initial position from the boundary increased, memory for initial position exhibited a smaller Fr?hlich effect or an onset repulsion effect (i.e., a displacement backward). When targets vanished adjacent to the boundary of a larger enclosing window, memory for final position was displaced backward, and when distance of final position from the boundary increased, memory for final position did not exhibit significant displacement. These patterns differed from previously reported displacements of initial and final positions of targets presented on a blank background. Possible influences of attention and extrapolation of trajectory on whether memory for initial position exhibits a Fr?hlich effect or an onset repulsion effect and on backward displacement in memory for final position are discussed.  相似文献   

15.
Five experiments were conducted to examine how perceived direction of motion is influenced by aspects of shape of a moving object such as symmetry and elongation. Random polygons moving obliquely were presented on a computer screen and perceived direction of motion was measured. Experiments 1 and 2 showed that a symmetric object moving off the axis of symmetry caused motion to be perceived as more aligned with the axis than it actually was. However, Experiment 3 showed that motion did not influence perceived orientation of symmetry axis. Experiment 4 revealed that symmetric shapes resulted in faster judgments on direction of motion than asymmetric shapes only when the motion is along the axis. Experiment 5 showed that elongation causes a bias in perceived direction of motion similar to effects of symmetry. Existence of such biases is consistent with the hypothesis that in the course of evolution, the visual system has been adapted to regularities of motion in the animate world.  相似文献   

16.
Localization of moving sound   总被引:3,自引:0,他引:3  
The final position of a moving sound source usually appears to be displaced in the direction of motion. We tested the hypothesis that this phenomenon, termed auditory representational momentum, is already emerging during, not merely after, the period of motion. For this purpose, we investigated the localization of a moving sound at different points in time. In a dark anechoic environment, an acoustic target moved along the frontal horizontal plane. In the initial, middle, or final phase of the motion trajectory, subjects received a tactile stimulus and determined the current position of the moving target at the moment of the stimulus by performing either relative-judgment or pointing tasks. Generally, in the initial phase of the auditory motion, the position was perceived to be displaced in the direction of motion, but this forward displacement disappeared in the further course of the motion. When the motion stimulus had ceased, however, its final position was again shifted in the direction of motion. The latter result suggests that representational momentum in spatial hearing is a phenomenon specific to the final point of motion. Mental extrapolation of past trajectory information is discussed as a potential source of this perceptual displacement.  相似文献   

17.
The final position of a moving sound source usually appears to be displaced in the direction of motion. We tested the hypothesis that this phenomenon, termed auditory representational momentum, is already emerging during, not merely after, the period of motion. For this purpose, we investigated the localization of a moving sound at different points in time. In a dark anechoic environment, an acoustic target moved along the frontal horizontal plane. In the initial, middle, or final phase of the motion trajectory, subjects received a tactile stimulus and determined the current position of the moving target at the moment of the stimulus by performing either relative-judgment or pointing tasks. Generally, in the initial phase of the auditory motion, the position was perceived to be displaced in the direction of motion, but this forward displacement disappeared in the further course of the motion. When the motion stimulus had ceased, however, its final position was again shifted in the direction of motion. The latter result suggests that representational momentum in spatial hearing is a phenomenon specific to the final point of motion. Mental extrapolation of past trajectory information is discussed as a potential source of this perceptual displacement.  相似文献   

18.
Observers were asked to indicate when a target moving on a circular trajectory changed its luminance. The judged position of the luminance change was displaced from the true position in the direction of motion, indicating differences between the times-to-consciousness of motion and luminance change. Motion was processed faster than luminance change. The latency difference was more pronounced for a small (116–134 ms) than for a large luminance decrement (37 ms). The results show that first-order motion is perceived before an accurate representation of luminance is available. These findings are consistent with current accounts of the flash-lag effect. Two control experiments ruled out that the results were due to a general forward tendency. Localization of the target when an auditory signal was presented did not produce forward displacement, and the judged onset of motion was not shifted in the direction of motion.  相似文献   

19.
Memory for the final location of a moving target is often displaced in the direction of target motion, and this has been referred to asrepresentational momentum. Characteristics of the target (e.g., velocity, size, direction, and identity), display (e.g., target format, retention interval, and response method), context (landmarks, expectations, and attribution of motion source), and observer (e.g., allocation of attention, eye movements, and psychopathology) that influence the direction and magnitude of displacement are reviewed. Specific conclusions regarding numerous variables that influence displacement (e.g., presence of landmarks or surrounding context), as well as broad-based conclusions regarding displacement in general (e.g., displacement does not reflect objective physical principles, may reflect aspects of naive physics, does not solely reflect eye movements, may involve some modular processing, and reflects high-level processes) are drawn. A possible computational theory of displacement is suggested in which displacement (1) helps bridge the gap between perception and action and (2) plays a critical part in localizing stimuli in the environment.  相似文献   

20.
翟坤  张志杰 《心理科学》2013,36(1):51-56
研究结合线索提示和表征动量范式,实验1、2均采用2有无线索(有线索,无线索)×4诱导期间时距(1250ms,1750ms,2250ms,2750ms)混合实验设计,探讨线索呈现的加工阶段和时距对表征动量的影响。实验1恒定保持间隔时距,在不同时距的诱导期间呈现线索,发现线索主效应不显著,但表征动量呈减小趋势;时距主效应不显著。实验2变化诱导时距,在恒定的保持间隔呈现线索,发生向后偏移现象,线索主效应显著;时距主效应不显著。研究结果表明,随着注意的增加,表征动量效应减小;注意时距不显著影响表征动量,而注意阶段显著影响表征动量。研究结果为表征动量的双加工理论提供了实证支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号